File size: 13,582 Bytes
12bf5e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
[
 {
  "problem_text": "Use the $D_0$ value of $\\mathrm{H}_2(4.478 \\mathrm{eV})$ and the $D_0$ value of $\\mathrm{H}_2^{+}(2.651 \\mathrm{eV})$ to calculate the first ionization energy of $\\mathrm{H}_2$ (that is, the energy needed to remove an electron from $\\mathrm{H}_2$ ).",
  "answer_latex": " 15.425",
  "answer_number": "15.425",
  "unit": " $\\mathrm{eV}$",
  "source": "quan",
  "problemid": " 13.3",
  "comment": " "
 },
 {
  "problem_text": "Calculate the energy of one mole of UV photons of wavelength $300 \\mathrm{~nm}$ and compare it with a typical single-bond energy of $400 \\mathrm{~kJ} / \\mathrm{mol}$.",
  "answer_latex": " 399",
  "answer_number": "399",
  "unit": " $\\mathrm{~kJ} / \\mathrm{mol}$",
  "source": "quan",
  "problemid": " 1.3",
  "comment": " "
 },
 {
  "problem_text": "Calculate the magnitude of the spin angular momentum of a proton. Give a numerical answer. ",
  "answer_latex": " 9.13",
  "answer_number": "9.13",
  "unit": " $10^{-35} \\mathrm{~J} \\mathrm{~s}$",
  "source": "quan",
  "problemid": " 10.1",
  "comment": " "
 },
 {
  "problem_text": "The ${ }^7 \\mathrm{Li}^1 \\mathrm{H}$ ground electronic state has $D_0=2.4287 \\mathrm{eV}, \\nu_e / c=1405.65 \\mathrm{~cm}^{-1}$, and $\\nu_e x_e / c=23.20 \\mathrm{~cm}^{-1}$, where $c$ is the speed of light. (These last two quantities are usually designated $\\omega_e$ and $\\omega_e x_e$ in the literature.) Calculate $D_e$ for ${ }^7 \\mathrm{Li}^1 \\mathrm{H}$.",
  "answer_latex": " 2.5151",
  "answer_number": "2.5151",
  "unit": " $\\mathrm{eV}$",
  "source": "quan",
  "problemid": " 13.5",
  "comment": " "
 },
 {
  "problem_text": "The positron has charge $+e$ and mass equal to the electron mass. Calculate in electronvolts the ground-state energy of positronium-an \"atom\" that consists of a positron and an electron.",
  "answer_latex": " -6.8",
  "answer_number": " -6.8",
  "unit": "$\\mathrm{eV}$",
  "source": "quan",
  "problemid": " 6.22",
  "comment": " "
 },
 {
  "problem_text": "What is the value of the angular-momentum quantum number $l$ for a $t$ orbital?",
  "answer_latex": " 14",
  "answer_number": "14",
  "unit": " ",
  "source": "quan",
  "problemid": " 6.29",
  "comment": " "
 },
 {
  "problem_text": "How many states belong to the carbon configurations $1 s^2 2 s^2 2 p^2$?",
  "answer_latex": " 15",
  "answer_number": "15",
  "unit": " ",
  "source": "quan",
  "problemid": " 11.22",
  "comment": " "
 },
 {
  "problem_text": "Calculate the energy needed to compress three carbon-carbon single bonds and stretch three carbon-carbon double bonds to the benzene bond length $1.397 \u00c5$. Assume a harmonicoscillator potential-energy function for bond stretching and compression. Typical carboncarbon single- and double-bond lengths are 1.53 and $1.335 \u00c5$; typical stretching force constants for carbon-carbon single and double bonds are 500 and $950 \\mathrm{~N} / \\mathrm{m}$.",
  "answer_latex": " 27",
  "answer_number": "27",
  "unit": " $\\mathrm{kcal} / \\mathrm{mol}$",
  "source": "quan",
  "problemid": " 17.9",
  "comment": " Angstrom "
 },
 {
  "problem_text": "When a particle of mass $9.1 \\times 10^{-28} \\mathrm{~g}$ in a certain one-dimensional box goes from the $n=5$ level to the $n=2$ level, it emits a photon of frequency $6.0 \\times 10^{14} \\mathrm{~s}^{-1}$. Find the length of the box.",
  "answer_latex": " 1.8",
  "answer_number": "1.8",
  "unit": "$\\mathrm{~nm}$",
  "source": "quan",
  "problemid": " 2.13",
  "comment": " "
 },
 {
  "problem_text": "Use the normalized Numerov-method harmonic-oscillator wave functions found by going from -5 to 5 in steps of 0.1 to estimate the probability of being in the classically forbidden region for the $v=0$ state.",
  "answer_latex": " 0.16",
  "answer_number": "0.16",
  "unit": " ",
  "source": "quan",
  "problemid": " 4.42",
  "comment": " "
 },
 {
  "problem_text": "Calculate the de Broglie wavelength of an electron moving at 1/137th the speed of light. (At this speed, the relativistic correction to the mass is negligible.)",
  "answer_latex": " 0.332",
  "answer_number": "0.332",
  "unit": "$\\mathrm{~nm}$",
  "source": "quan",
  "problemid": " 1.6",
  "comment": " "
 },
 {
  "problem_text": "Calculate the angle that the spin vector $S$ makes with the $z$ axis for an electron with spin function $\\alpha$.",
  "answer_latex": " 54.7",
  "answer_number": "54.7",
  "unit": " $^{\\circ}$",
  "source": "quan",
  "problemid": " 10.2",
  "comment": " "
 },
 {
  "problem_text": "The AM1 valence electronic energies of the atoms $\\mathrm{H}$ and $\\mathrm{O}$ are $-11.396 \\mathrm{eV}$ and $-316.100 \\mathrm{eV}$, respectively. For $\\mathrm{H}_2 \\mathrm{O}$ at its AM1-calculated equilibrium geometry, the AM1 valence electronic energy (core-core repulsion omitted) is $-493.358 \\mathrm{eV}$ and the AM1 core-core repulsion energy is $144.796 \\mathrm{eV}$. For $\\mathrm{H}(g)$ and $\\mathrm{O}(g), \\Delta H_{f, 298}^{\\circ}$ values are 52.102 and $59.559 \\mathrm{kcal} / \\mathrm{mol}$, respectively. Find the AM1 prediction of $\\Delta H_{f, 298}^{\\circ}$ of $\\mathrm{H}_2 \\mathrm{O}(g)$.",
  "answer_latex": " -59.24",
  "answer_number": "-59.24",
  "unit": " $\\mathrm{kcal} / \\mathrm{mol}$",
  "source": "quan",
  "problemid": " 17.29",
  "comment": " "
 },
 {
  "problem_text": "Given that $D_e=4.75 \\mathrm{eV}$ and $R_e=0.741 \u00c5$ for the ground electronic state of $\\mathrm{H}_2$, find $U\\left(R_e\\right)$ for this state.",
  "answer_latex": " -31.95",
  "answer_number": " -31.95",
  "unit": " $\\mathrm{eV}$",
  "source": "quan",
  "problemid": " 14.35",
  "comment": " Angstrom "
 },
 {
  "problem_text": "For $\\mathrm{NaCl}, R_e=2.36 \u00c5$. The ionization energy of $\\mathrm{Na}$ is $5.14 \\mathrm{eV}$, and the electron affinity of $\\mathrm{Cl}$ is $3.61 \\mathrm{eV}$. Use the simple model of $\\mathrm{NaCl}$ as a pair of spherical ions in contact to estimate $D_e$. [One debye (D) is $3.33564 \\times 10^{-30} \\mathrm{C} \\mathrm{m}$.]",
  "answer_latex": " 4.56",
  "answer_number": " 4.56",
  "unit": " $\\mathrm{eV}$",
  "source": "quan",
  "problemid": " 14.5",
  "comment": " Angstrom "
 },
 {
  "problem_text": "Find the number of CSFs in a full CI calculation of $\\mathrm{CH}_2 \\mathrm{SiHF}$ using a 6-31G** basis set.",
  "answer_latex": " 1.86",
  "answer_number": "1.86",
  "unit": "$10^{28} $",
  "source": "quan",
  "problemid": " 16.1",
  "comment": " "
 },
 {
  "problem_text": "Calculate the ratio of the electrical and gravitational forces between a proton and an electron.",
  "answer_latex": " 2",
  "answer_number": "2",
  "unit": " $10^{39}$",
  "source": "quan",
  "problemid": " 6.15",
  "comment": " "
 },
 {
  "problem_text": "A one-particle, one-dimensional system has the state function\r\n$$\r\n\\Psi=(\\sin a t)\\left(2 / \\pi c^2\\right)^{1 / 4} e^{-x^2 / c^2}+(\\cos a t)\\left(32 / \\pi c^6\\right)^{1 / 4} x e^{-x^2 / c^2}\r\n$$\r\nwhere $a$ is a constant and $c=2.000 \u00c5$. If the particle's position is measured at $t=0$, estimate the probability that the result will lie between $2.000 \u00c5$ and $2.001 \u00c5$.",
  "answer_latex": " 0.000216",
  "answer_number": "0.000216",
  "unit": " ",
  "source": "quan",
  "problemid": " 1.13",
  "comment": " Angstrom"
 },
 {
  "problem_text": "The $J=2$ to 3 rotational transition in a certain diatomic molecule occurs at $126.4 \\mathrm{GHz}$, where $1 \\mathrm{GHz} \\equiv 10^9 \\mathrm{~Hz}$. Find the frequency of the $J=5$ to 6 absorption in this molecule.",
  "answer_latex": " 252.8",
  "answer_number": " 252.8",
  "unit": " $\\mathrm{GHz}$",
  "source": "quan",
  "problemid": " 6.10",
  "comment": " Approximated answer"
 },
 {
  "problem_text": "Assume that the charge of the proton is distributed uniformly throughout the volume of a sphere of radius $10^{-13} \\mathrm{~cm}$. Use perturbation theory to estimate the shift in the ground-state hydrogen-atom energy due to the finite proton size. The potential energy experienced by the electron when it has penetrated the nucleus and is at distance $r$ from the nuclear center is $-e Q / 4 \\pi \\varepsilon_0 r$, where $Q$ is the amount of proton charge within the sphere of radius $r$. The evaluation of the integral is simplified by noting that the exponential factor in $\\psi$ is essentially equal to 1 within the nucleus.\r\n",
  "answer_latex": " 1.2",
  "answer_number": "1.2",
  "unit": " $10^{-8} \\mathrm{eV}$",
  "source": "quan",
  "problemid": " 9.9",
  "comment": " "
 },
 {
  "problem_text": "An electron in a three-dimensional rectangular box with dimensions of $5.00 \u00c5, 3.00 \u00c5$, and $6.00 \u00c5$ makes a radiative transition from the lowest-lying excited state to the ground state. Calculate the frequency of the photon emitted.",
  "answer_latex": "7.58",
  "answer_number": "7.58",
  "unit": " $10^{14} \\mathrm{~s}^{-1}$",
  "source": "quan",
  "problemid": " 3.35",
  "comment": " Angstrom "
 },
 {
  "problem_text": "Do $\\mathrm{HF} / 6-31 \\mathrm{G}^*$ geometry optimizations on one conformers of $\\mathrm{HCOOH}$ with $\\mathrm{OCOH}$ dihedral angle of $0^{\\circ}$. Calculate the dipole moment.",
  "answer_latex": " 1.41",
  "answer_number": "1.41",
  "unit": " $\\mathrm{D}$",
  "source": "quan",
  "problemid": " 15.57",
  "comment": " "
 },
 {
  "problem_text": "Frozen-core $\\mathrm{SCF} / \\mathrm{DZP}$ and CI-SD/DZP calculations on $\\mathrm{H}_2 \\mathrm{O}$ at its equilibrium geometry gave energies of -76.040542 and -76.243772 hartrees. Application of the Davidson correction brought the energy to -76.254549 hartrees. Find the coefficient of $\\Phi_0$ in the normalized CI-SD wave function.",
  "answer_latex": " 0.9731",
  "answer_number": "0.9731",
  "unit": " ",
  "source": "quan",
  "problemid": " 16.3",
  "comment": " "
 },
 {
  "problem_text": "Let $w$ be the variable defined as the number of heads that show when two coins are tossed simultaneously. Find $\\langle w\\rangle$.",
  "answer_latex": " 1",
  "answer_number": "1",
  "unit": " ",
  "source": "quan",
  "problemid": " 5.8",
  "comment": " "
 },
 {
  "problem_text": "Calculate the force on an alpha particle passing a gold atomic nucleus at a distance of $0.00300 \u00c5$.",
  "answer_latex": " 0.405",
  "answer_number": "0.405",
  "unit": " $\\mathrm{~N}$",
  "source": "quan",
  "problemid": " 1.31",
  "comment": " "
 },
 {
  "problem_text": "When an electron in a certain excited energy level in a one-dimensional box of length $2.00  \u00c5$ makes a transition to the ground state, a photon of wavelength $8.79 \\mathrm{~nm}$ is emitted. Find the quantum number of the initial state.",
  "answer_latex": "4",
  "answer_number": "4",
  "unit": "",
  "source": "quan",
  "problemid": " 2.13",
  "comment": " Angstrom "
 },
 {
  "problem_text": "For a macroscopic object of mass $1.0 \\mathrm{~g}$ moving with speed $1.0 \\mathrm{~cm} / \\mathrm{s}$ in a one-dimensional box of length $1.0 \\mathrm{~cm}$, find the quantum number $n$.",
  "answer_latex": " 3",
  "answer_number": "3",
  "unit": "$10^{26}$",
  "source": "quan",
  "problemid": " 2.11",
  "comment": " "
 },
 {
  "problem_text": "For the $\\mathrm{H}_2$ ground electronic state, $D_0=4.4781 \\mathrm{eV}$. Find $\\Delta H_0^{\\circ}$ for $\\mathrm{H}_2(g) \\rightarrow 2 \\mathrm{H}(g)$ in $\\mathrm{kJ} / \\mathrm{mol}$",
  "answer_latex": " 432.07",
  "answer_number": "432.07",
  "unit": " $\\mathrm{~kJ} / \\mathrm{mol}$",
  "source": "quan",
  "problemid": " 13.2",
  "comment": " "
 },
 {
  "problem_text": "The contribution of molecular vibrations to the molar internal energy $U_{\\mathrm{m}}$ of a gas of nonlinear $N$-atom molecules is (zero-point vibrational energy not included) $U_{\\mathrm{m}, \\mathrm{vib}}=R \\sum_{s=1}^{3 N-6} \\theta_s /\\left(e^{\\theta_s / T}-1\\right)$, where $\\theta_s \\equiv h \\nu_s / k$ and $\\nu_s$ is the vibrational frequency of normal mode $s$. Calculate the contribution to $U_{\\mathrm{m}, \\text { vib }}$ at $25^{\\circ} \\mathrm{C}$ of a normal mode with wavenumber $\\widetilde{v} \\equiv v_s / c$ of $900 \\mathrm{~cm}^{-1}$.",
  "answer_latex": " 0.14",
  "answer_number": "0.14",
  "unit": " $\\mathrm{kJ} / \\mathrm{mol}$",
  "source": "quan",
  "problemid": " 15.39",
  "comment": " "
 },
 {
  "problem_text": "Calculate the magnitude of the spin magnetic moment of an electron.",
  "answer_latex": " 1.61",
  "answer_number": "1.61",
  "unit": " $10^{-23} \\mathrm{~J} / \\mathrm{T}$",
  "source": "quan",
  "problemid": " 10.17",
  "comment": " "
 },
 {
  "problem_text": "A particle is subject to the potential energy $V=a x^4+b y^4+c z^4$. If its ground-state energy is $10 \\mathrm{eV}$, calculate $\\langle V\\rangle$ for the ground state.",
  "answer_latex": " $3\frac{1}{3}$",
  "answer_number": "3.333333333",
  "unit": " $\\mathrm{eV}$",
  "source": "quan",
  "problemid": " 14.29",
  "comment": " screenshot answer is weird"
 },
 {
  "problem_text": "For an electron in a certain rectangular well with a depth of $20.0 \\mathrm{eV}$, the lowest energy level lies $3.00 \\mathrm{eV}$ above the bottom of the well. Find the width of this well. Hint: Use $\\tan \\theta=\\sin \\theta / \\cos \\theta$",
  "answer_latex": " 0.264",
  "answer_number": "0.264",
  "unit": "$\\mathrm{~nm}$",
  "source": "quan",
  "problemid": " 2.27",
  "comment": " hint"
 },
 {
  "problem_text": "Calculate the uncertainty $\\Delta L_z$ for the hydrogen-atom stationary state: $2 p_z$.",
  "answer_latex": " 0",
  "answer_number": "0",
  "unit": " ",
  "source": "quan",
  "problemid": " 7.56",
  "comment": " "
 }
]