from pathlib import Path import datasets import numpy as np from PIL import Image project_name = 'xiazeyu/WildfireSimMaps' map_names = sorted([x.name for x in Path('dataset').iterdir() if x.is_dir()]) _CITATION = """\ """ _DESCRIPTION = 'A real-world dataset for wildfire simulation.' _HOMEPAGE = 'https://huggingface.co/datasets/xiazeyu/WildfireSimMaps' _LICENSE = 'CC BY-NC 4.0' def load_map(map_name): map_root = Path('dataset') / map_name return {'canopy': np.array(Image.open(map_root / 'canopy.tif')), 'density': np.array(Image.open(map_root / 'density.tif')), 'slope': np.array(Image.open(map_root / 'slope.tif')), } data = {'name': [], 'canopy': [], 'density': [], "slope": [], 'shape': [], } for name in map_names: map_data = load_map(name) data['name'].append(name) data['canopy'].append(map_data['canopy'].flatten()) data['density'].append(map_data['density'].flatten()) data['slope'].append(map_data['slope'].flatten()) data['shape'].append(map_data['canopy'].shape) features = datasets.Features({'name': datasets.Value('string'), 'canopy': datasets.Sequence(datasets.Value('int8')), 'density': datasets.Sequence(datasets.Value('float32')), 'slope': datasets.Sequence(datasets.Value('int8')), 'shape': datasets.Sequence(datasets.Value('int16'), length=2), }) data_info = datasets.DatasetInfo(description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) ds = datasets.Dataset.from_dict(data, features=features, info=data_info, ) ds.VERSION = datasets.Version("1.0.0") ds.push_to_hub(project_name)