xiazeyu commited on
Commit
89a31b6
1 Parent(s): 41c1eee

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +114 -0
README.md CHANGED
@@ -23,4 +23,118 @@ configs:
23
  data_files:
24
  - split: train
25
  path: data/train-*
 
 
 
 
 
 
 
 
26
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23
  data_files:
24
  - split: train
25
  path: data/train-*
26
+ license: cc
27
+ task_categories:
28
+ - feature-extraction
29
+ tags:
30
+ - climate
31
+ - geology
32
+ size_categories:
33
+ - n<1K
34
  ---
35
+
36
+ # WildfireSimMaps
37
+
38
+ ## Description
39
+
40
+ This is a dataset containing real-world map data for wildfire simulations.
41
+ The data is in the form of 2D maps with the following features:
42
+
43
+ - `name`: The name of the map data.
44
+ - `shape`: The shape of the area, in pixels.
45
+ - `canopy`: The canopy cover in the area, in percentage.
46
+ - `density`: The density of the area, in percentage.
47
+ - `slope`: The slope of the area, in degrees.
48
+
49
+ ## Quick Start
50
+
51
+ Install the package using pip:
52
+
53
+ ```bash
54
+ pip install datasets
55
+ ```
56
+
57
+ Then you can use the dataset as follows with **NumPy**:
58
+
59
+ ```python
60
+ import numpy as np
61
+ from datasets import load_dataset
62
+
63
+ # Load the dataset
64
+ ds = load_dataset("xiazeyu/WildfireSimMaps", split="train")
65
+ ds = ds.with_format("numpy")
66
+
67
+ def preprocess_function(examples):
68
+ # Reshape arrays based on the 'shape' field
69
+ examples['density'] = [d.reshape(sh) for d, sh in zip(examples['density'], examples['shape'])]
70
+ examples['slope'] = [s.reshape(sh) for s, sh in zip(examples['slope'], examples['shape'])]
71
+ examples['canopy'] = [c.reshape(sh) for c, sh in zip(examples['canopy'], examples['shape'])]
72
+
73
+ return examples
74
+
75
+ ds = ds.map(preprocess_function, batched=True, batch_size=None) # Adjust batch_size as needed
76
+
77
+ print(ds[0])
78
+ ```
79
+
80
+ To use the dataset with **PyTorch**, you can use the following code:
81
+
82
+ ```python
83
+ import torch
84
+ from datasets import load_dataset
85
+
86
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
87
+
88
+ # Load the dataset
89
+ ds = load_dataset("xiazeyu/WildfireSimMaps", split="train")
90
+ ds = ds.with_format("torch", device=device)
91
+
92
+ def preprocess_function(examples):
93
+ # Reshape arrays based on the 'shape' field
94
+ examples['density'] = [d.reshape(sh.tolist()) for d, sh in zip(examples['density'], examples['shape'])]
95
+ examples['slope'] = [s.reshape(sh.tolist()) for s, sh in zip(examples['slope'], examples['shape'])]
96
+ examples['canopy'] = [c.reshape(sh.tolist()) for c, sh in zip(examples['canopy'], examples['shape'])]
97
+
98
+ return examples
99
+
100
+ ds = ds.map(preprocess_function, batched=True, batch_size=None) # Adjust batch_size as needed
101
+
102
+ print(ds[0])
103
+ ```
104
+
105
+ ## Next Steps
106
+
107
+ In order to make practical use of this dataset, you may perform the following tasks:
108
+
109
+ - scale or normalize the data to fit your model's requirements
110
+ - reshape the data to fit your model's input shape
111
+ - stack the data into a single tensor if needed
112
+ - perform data augmentation if needed
113
+ - split the data into training, validation, and test sets
114
+
115
+ In general, you can use the dataset as you would use any other dataset in your pipeline.
116
+
117
+ And the most important thing is to have fun and learn from the data!
118
+
119
+ ## Visualization
120
+
121
+ Density
122
+
123
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6461cc67ddb3aaa43c8afef3/RLpWQ0G3Nqfxg-5gJh4YV.png)
124
+
125
+ Canopy
126
+
127
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6461cc67ddb3aaa43c8afef3/LeJoly6Xo8IhoX2WmdXIU.png)
128
+
129
+ Slope
130
+
131
+ ![image/png](https://cdn-uploads.huggingface.co/production/uploads/6461cc67ddb3aaa43c8afef3/lkSHHZs9hjR0Yn0Nedl6x.png)
132
+
133
+ ## License
134
+
135
+ The dataset is licensed under the CC BY-NC 4.0 License.
136
+
137
+ ## Contact
138
+
139
+ - Zeyu Xia - [email protected]
140
+ - Sibo Cheng - [email protected]