--- dataset_info: - config_name: corpus features: - name: corpus-id dtype: int64 - name: image dtype: image - name: pdf_url dtype: string - name: company dtype: string - name: date dtype: string splits: - name: test num_bytes: 842829685.81 num_examples: 1538 download_size: 761076653 dataset_size: 842829685.81 - config_name: qrels features: - name: query-id dtype: int64 - name: corpus-id dtype: int64 - name: score dtype: int64 splits: - name: test num_bytes: 3072 num_examples: 128 download_size: 2521 dataset_size: 3072 - config_name: queries features: - name: query-id dtype: int64 - name: query dtype: string - name: source_type sequence: string - name: answer dtype: string splits: - name: test num_bytes: 35047 num_examples: 52 download_size: 23714 dataset_size: 35047 configs: - config_name: corpus data_files: - split: test path: corpus/test-* - config_name: qrels data_files: - split: test path: qrels/test-* - config_name: queries data_files: - split: test path: queries/test-* --- # Vidore Benchmark 2 - ESG Human Labeled This dataset is part of the "Vidore Benchmark 2" collection, designed for evaluating visual retrieval applications. It focuses on the theme of **ESG reports from the fast food industry**. ## Dataset Summary Each query is in english. This dataset provides a focused benchmark for visual retrieval tasks related to ESG reports for the fast food industry. It includes a curated set of documents, queries, relevance judgments (qrels), and page images. This dataset was fully labelled by hand, has no overlap of queries with its synthetic counterpart (available [here](https://huggingface.co/datasets/vidore/synthetic_rse_restaurant_filtered_v1.0)) * **Number of Documents:** 27 * **Number of Queries:** 52 * **Number of Pages:** 1538 * **Number of Relevance Judgments (qrels):** 128 * **Average Number of Pages per Query:** 2.5 ## Dataset Structure (Hugging Face Datasets) The dataset is structured into the following columns: * **`corpus`**: Contains page-level information: * `"image"`: The image of the page (a PIL Image object). * `"corpus-id"`: A unique identifier for this specific page within the corpus. * **`queries`**: Contains query information: * `"query-id"`: A unique identifier for the query. * `"query"`: The text of the query. * **`qrels`**: Contains relevance judgments: * `"corpus-id"`: The ID of the relevant page. * `"query-id"`: The ID of the query. * `"answer"`: Answer relevant to the query AND the page. * `"score"`: The relevance score. ## Usage This dataset is designed for evaluating the performance of visual retrieval systems, particularly those focused on document image understanding. **Example Evaluation with ColPali (CLI):** Here's a code snippet demonstrating how to evaluate the ColPali model on this dataset using the `vidore-benchmark` command-line tool. 1. **Install the `vidore-benchmark` package:** ```bash pip install vidore-benchmark datasets ``` 2. **Run the evaluation:** ```bash vidore-benchmark evaluate-retriever \ --model-class colpali \ --model-name vidore/colpali-v1.3 \ --dataset-name vidore/restaurant_esg_reports_beir \ --dataset-format beir \ --split test ``` For more details on using `vidore-benchmark`, refer to the official documentation: [https://github.com/illuin-tech/vidore-benchmark](https://github.com/illuin-tech/vidore-benchmark) ## Citation If you use this dataset in your research or work, please cite: ```bibtex @misc{faysse2024colpaliefficientdocumentretrieval, title={ColPali: Efficient Document Retrieval with Vision Language Models}, author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and CĂ©line Hudelot and Pierre Colombo}, year={2024}, eprint={2407.01449}, archivePrefix={arXiv}, primaryClass={cs.IR}, url={https://arxiv.org/abs/2407.01449}, } ``` ## Acknowledgments This work is partially supported by [ILLUIN Technology](https://www.illuin.tech/), and by a grant from ANRT France.