File size: 3,940 Bytes
b07f5e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
# Modified by Vésteinn Snæbjarnarson 2021
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


# Lint as: python3






LABELS = [
   "EVN",
   "GRO",
   "LOC",
   "MNT",
   "O",
   "PRS",
   "SMP",
   "TME",
   "WRK"
]



import datasets


logger = datasets.logging.get_logger(__name__)


_CITATION = """\
@misc{swe-nerc,
 title = {Swe-NERC},
 author = {Ahrenberg, Lars ; Frid, Johan and Olsson, Leif-Jöran},
 url = {https://hdl.handle.net/10794/121},
 year = {2020} }
"""

_DESCRIPTION = """\
The corpus consists of ca. 150.000 words of text.
"""

_URL = "https://huggingface.co/datasets/vesteinn/swe-nerc/raw/main/"
_TRAINING_FILE = "swe_nerc_v1.tsv"


class SweNERCConfig(datasets.BuilderConfig):
    """BuilderConfig for swe-nerc"""

    def __init__(self, **kwargs):
        """BuilderConfig for swe-nerc.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(SweNERCConfig, self).__init__(**kwargs)


class SweNERC(datasets.GeneratorBasedBuilder):
    """sosialurin-faroese-ner dataset."""

    BUILDER_CONFIGS = [
        SweNERCConfig(name="swe-nerc", version=datasets.Version("1.0"), description="swedish ner corpus"),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "ner_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=LABELS
                        )
                    ),
                }
            ),
            supervised_keys=None,
            homepage="",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        urls_to_download = {
            "train": f"{_URL}{_TRAINING_FILE}",
        }
        downloaded_files = dl_manager.download_and_extract(urls_to_download)

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}),
        ]

    def _generate_examples(self, filepath):
        logger.info("⏳ Generating examples from = %s", filepath)
        with open(filepath, encoding="utf-8") as f:
            guid = 0
            tokens = []
            ner_tags = []
            for line in f:
                if line.startswith("-DOCSTART-") or line == "" or line == "\n":
                    if tokens:
                        yield guid, {
                            "id": str(guid),
                            "tokens": tokens,
                            "ner_tags": ner_tags,
                        }
                        guid += 1
                        tokens = []
                        ner_tags = []
                else:
                    # tokens are tab separated
                    splits = line.split("\t")
                    tokens.append(splits[0])
                    try:
                       ner_tags.append(splits[1].rstrip())
                    except:
                        print(splits)
                        raise
            # last example
            yield guid, {
                "id": str(guid),
                "tokens": tokens,
                "ner_tags": ner_tags,
            }