vesteinn commited on
Commit
a850dfa
·
1 Parent(s): 399efde

README added

Browse files
Files changed (2) hide show
  1. README.md +13 -0
  2. create_splits.py +175 -0
README.md ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # NER for Icelandic - MIM-GOLD-NER splits
2
+
3
+ ## MIM-GOLD-NER
4
+
5
+ The original MIM-GOLD-NER data is found at http://hdl.handle.net/20.500.12537/42
6
+
7
+ This repository packages the data for use with the Datasets library from hugginface.
8
+
9
+ ## Splits
10
+
11
+ Since the original data does not have train, dev and test splits there was a need to create them. See `create_splits.py` for how that was done.
12
+
13
+
create_splits.py ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+ # want data from all documents
3
+ # want data from all classes
4
+ #
5
+
6
+ file_names = [
7
+ "adjudications.txt",
8
+ "blog.txt",
9
+ "books.txt",
10
+ "emails.txt",
11
+ "fbl.txt",
12
+ "laws.txt",
13
+ "mbl.txt",
14
+ "radio_tv_news.txt",
15
+ "school_essays.txt",
16
+ "scienceweb.txt",
17
+ "webmedia.txt",
18
+ "websites.txt",
19
+ "written-to-be-spoken.txt"
20
+ ]
21
+
22
+ def read_file(file_name):
23
+ data = []
24
+ sentence = []
25
+ with open(file_name) as fh:
26
+ for line in fh.readlines():
27
+ if not line.strip() and sentence:
28
+ data.append(sentence)
29
+ sentence = []
30
+ continue
31
+ w, t = line.strip().split()
32
+ sentence.append((w, t))
33
+ return data
34
+
35
+ from collections import defaultdict
36
+ def calc_stats(data):
37
+ stats = defaultdict(int)
38
+ for sent in data:
39
+ stats["n_sentences"] += 1
40
+ for token, label in sent:
41
+ stats[label] += 1
42
+ return stats
43
+
44
+
45
+ import pprint
46
+ def get_total_stats():
47
+ total_stats = defaultdict(int)
48
+ for file_name in file_names:
49
+ d = read_file("data/"+file_name)
50
+ stats = calc_stats(d)
51
+ #print(f"--- [{file_name}]---")
52
+ #pprint.pprint(stats)
53
+ for k, v in stats.items():
54
+ total_stats[k] += v
55
+ #print("---- TOTAL ---- ")
56
+ #pprint.pprint(total_stats)
57
+ return total_stats
58
+
59
+ import random
60
+ random.seed(1)
61
+
62
+ def check_if_not_done(stats, total_stats, target):
63
+ for k, v in total_stats.items():
64
+ if v * target > stats[k]:
65
+ return True
66
+ return False
67
+
68
+ def create_splits(train=0.8, test=0.1, dev=0.1):
69
+ train_data = []
70
+ test_data = []
71
+ dev_data = []
72
+
73
+ total_stats = get_total_stats()
74
+
75
+ for file_name in file_names:
76
+ train_stats = defaultdict(int)
77
+ test_stats = defaultdict(int)
78
+ dev_stats = defaultdict(int)
79
+
80
+ d = read_file("data/"+file_name)
81
+ stats = calc_stats(d)
82
+ random.shuffle(d)
83
+
84
+ file_train = []
85
+ file_test = []
86
+ file_dev = []
87
+
88
+ for sent in d:
89
+ if check_if_not_done(test_stats, stats, test):
90
+ # TEST data
91
+ use = False
92
+ for token in sent:
93
+ w, tag = token
94
+ if tag == 'O':
95
+ continue
96
+ if test_stats[tag] < test * stats[tag] - 5:
97
+ use = True
98
+ if test_stats['n_sentences'] < test * stats['n_sentences'] - 5:
99
+ use = True
100
+ if use:
101
+ file_test.append(sent)
102
+ test_stats['n_sentences'] += 1
103
+ for w, t in sent:
104
+ test_stats[t] += 1
105
+ elif check_if_not_done(dev_stats, stats, dev):
106
+ # DEV DATA
107
+ use = False
108
+ for token in sent:
109
+ w, tag = token
110
+ if tag == 'O':
111
+ continue
112
+ if dev_stats[tag] < dev * stats[tag] - 5:
113
+ use = True
114
+ if dev_stats['n_sentences'] < dev * stats['n_sentences'] - 5:
115
+ use = True
116
+ if use:
117
+ file_dev.append(sent)
118
+ dev_stats['n_sentences'] += 1
119
+ for w, t in sent:
120
+ dev_stats[t] += 1
121
+ else:
122
+ file_train.append(sent)
123
+ train_stats['n_sentences'] += 1
124
+ for w, t in sent:
125
+ train_stats[t] += 1
126
+ else:
127
+ file_train.append(sent)
128
+ train_stats['n_sentences'] += 1
129
+ for w, t in sent:
130
+ train_stats[t] += 1
131
+ try:
132
+ assert len(d) == len(file_train) + len(file_dev) + len(file_test)
133
+ except:
134
+ import pdb; pdb.set_trace()
135
+ train_data += file_train
136
+ test_data += file_test
137
+ dev_data += file_dev
138
+
139
+ return train_data, test_data, dev_data
140
+
141
+ train, test, dev = create_splits()
142
+
143
+ total_stats = get_total_stats()
144
+ print("---- total -----")
145
+ pprint.pprint(total_stats)
146
+ print("----- test ----")
147
+ test_stats = calc_stats(test)
148
+ pprint.pprint(test_stats)
149
+ print("----- dev ----")
150
+ dev_stats = calc_stats(dev)
151
+ pprint.pprint(dev_stats)
152
+ print("----- train ----")
153
+ train_stats = calc_stats(train)
154
+ pprint.pprint(train_stats)
155
+
156
+
157
+ with open("train.txt", "w") as outf:
158
+ for sent in train:
159
+ for w, t in sent:
160
+ outf.writelines(f"{w} {t}\n")
161
+ outf.writelines("\n")
162
+
163
+
164
+ with open("test.txt", "w") as outf:
165
+ for sent in test:
166
+ for w, t in sent:
167
+ outf.writelines(f"{w} {t}\n")
168
+ outf.writelines("\n")
169
+
170
+
171
+ with open("dev.txt", "w") as outf:
172
+ for sent in dev:
173
+ for w, t in sent:
174
+ outf.writelines(f"{w} {t}\n")
175
+ outf.writelines("\n")