Commit
Β·
d034c0d
1
Parent(s):
52dc8a2
Add plain text prompt support and sample limiting to generate-responses.py
Browse files- Add --prompt-column option to accept plain text prompts, automatically converting to chat format
- Add --max-samples option to limit dataset processing for testing and development
- Update README.md with examples showing both chat message and plain text prompt usage
- Enhance dataset card generation to reflect input column type (chat vs plain text)
- Improve validation logic to handle both input modes
π€ Generated with [Claude Code](https://claude.ai/code)
Co-Authored-By: Claude <[email protected]>
- README.md +13 -2
- generate-responses.py +63 -15
README.md
CHANGED
|
@@ -52,32 +52,43 @@ hf jobs uv run \
|
|
| 52 |
|
| 53 |
### generate-responses.py
|
| 54 |
|
| 55 |
-
Generate responses for
|
| 56 |
|
| 57 |
**Features:**
|
| 58 |
|
| 59 |
- π¬ Automatic chat template application
|
|
|
|
| 60 |
- π Multi-GPU tensor parallelism support
|
| 61 |
- π Smart filtering for prompts exceeding context length
|
| 62 |
- π Comprehensive dataset cards with generation metadata
|
| 63 |
- β‘ HF Transfer enabled for fast model downloads
|
| 64 |
- ποΈ Full control over sampling parameters
|
|
|
|
| 65 |
|
| 66 |
**Usage:**
|
| 67 |
|
| 68 |
```bash
|
| 69 |
-
#
|
| 70 |
uv run generate-responses.py \
|
| 71 |
username/input-dataset \
|
| 72 |
username/output-dataset \
|
| 73 |
--messages-column messages \
|
| 74 |
--max-tokens 1024
|
| 75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
# With custom model and parameters
|
| 77 |
uv run generate-responses.py \
|
| 78 |
username/input-dataset \
|
| 79 |
username/output-dataset \
|
| 80 |
--model-id meta-llama/Llama-3.1-8B-Instruct \
|
|
|
|
| 81 |
--temperature 0.9 \
|
| 82 |
--top-p 0.95 \
|
| 83 |
--max-model-len 8192
|
|
|
|
| 52 |
|
| 53 |
### generate-responses.py
|
| 54 |
|
| 55 |
+
Generate responses for prompts using generative LLMs (e.g., Llama, Qwen, Mistral) with vLLM's high-performance inference engine.
|
| 56 |
|
| 57 |
**Features:**
|
| 58 |
|
| 59 |
- π¬ Automatic chat template application
|
| 60 |
+
- π Support for both chat messages and plain text prompts
|
| 61 |
- π Multi-GPU tensor parallelism support
|
| 62 |
- π Smart filtering for prompts exceeding context length
|
| 63 |
- π Comprehensive dataset cards with generation metadata
|
| 64 |
- β‘ HF Transfer enabled for fast model downloads
|
| 65 |
- ποΈ Full control over sampling parameters
|
| 66 |
+
- π― Sample limiting with `--max-samples` for testing
|
| 67 |
|
| 68 |
**Usage:**
|
| 69 |
|
| 70 |
```bash
|
| 71 |
+
# With chat-formatted messages (default)
|
| 72 |
uv run generate-responses.py \
|
| 73 |
username/input-dataset \
|
| 74 |
username/output-dataset \
|
| 75 |
--messages-column messages \
|
| 76 |
--max-tokens 1024
|
| 77 |
|
| 78 |
+
# With plain text prompts (NEW!)
|
| 79 |
+
uv run generate-responses.py \
|
| 80 |
+
username/input-dataset \
|
| 81 |
+
username/output-dataset \
|
| 82 |
+
--prompt-column question \
|
| 83 |
+
--max-tokens 1024 \
|
| 84 |
+
--max-samples 100
|
| 85 |
+
|
| 86 |
# With custom model and parameters
|
| 87 |
uv run generate-responses.py \
|
| 88 |
username/input-dataset \
|
| 89 |
username/output-dataset \
|
| 90 |
--model-id meta-llama/Llama-3.1-8B-Instruct \
|
| 91 |
+
--prompt-column text \
|
| 92 |
--temperature 0.9 \
|
| 93 |
--top-p 0.95 \
|
| 94 |
--max-model-len 8192
|
generate-responses.py
CHANGED
|
@@ -82,6 +82,7 @@ def create_dataset_card(
|
|
| 82 |
source_dataset: str,
|
| 83 |
model_id: str,
|
| 84 |
messages_column: str,
|
|
|
|
| 85 |
sampling_params: SamplingParams,
|
| 86 |
tensor_parallel_size: int,
|
| 87 |
num_examples: int,
|
|
@@ -119,7 +120,7 @@ This dataset contains generated responses for prompts from [{source_dataset}](ht
|
|
| 119 |
## Generation Details
|
| 120 |
|
| 121 |
- **Source Dataset**: [{source_dataset}](https://huggingface.co/datasets/{source_dataset})
|
| 122 |
-
- **
|
| 123 |
- **Model**: [{model_id}](https://huggingface.co/{model_id})
|
| 124 |
- **Number of Examples**: {num_examples:,}
|
| 125 |
- **Generation Date**: {generation_time}{filtering_section}
|
|
@@ -154,7 +155,7 @@ uv run https://huggingface.co/datasets/uv-scripts/vllm/raw/main/generate-respons
|
|
| 154 |
{source_dataset} \\
|
| 155 |
<output-dataset> \\
|
| 156 |
--model-id {model_id} \\
|
| 157 |
-
--messages-column
|
| 158 |
--temperature {sampling_params.temperature} \\
|
| 159 |
--top-p {sampling_params.top_p} \\
|
| 160 |
--top-k {sampling_params.top_k} \\
|
|
@@ -168,6 +169,7 @@ def main(
|
|
| 168 |
output_dataset_hub_id: str,
|
| 169 |
model_id: str = "Qwen/Qwen3-30B-A3B-Instruct-2507",
|
| 170 |
messages_column: str = "messages",
|
|
|
|
| 171 |
output_column: str = "response",
|
| 172 |
temperature: float = 0.7,
|
| 173 |
top_p: float = 0.8,
|
|
@@ -179,6 +181,7 @@ def main(
|
|
| 179 |
max_model_len: Optional[int] = None,
|
| 180 |
tensor_parallel_size: Optional[int] = None,
|
| 181 |
skip_long_prompts: bool = True,
|
|
|
|
| 182 |
hf_token: Optional[str] = None,
|
| 183 |
):
|
| 184 |
"""
|
|
@@ -189,6 +192,7 @@ def main(
|
|
| 189 |
output_dataset_hub_id: Where to save results on Hugging Face Hub
|
| 190 |
model_id: Hugging Face model ID for generation
|
| 191 |
messages_column: Column name containing chat messages
|
|
|
|
| 192 |
output_column: Column name for generated responses
|
| 193 |
temperature: Sampling temperature
|
| 194 |
top_p: Top-p sampling parameter
|
|
@@ -200,6 +204,7 @@ def main(
|
|
| 200 |
max_model_len: Maximum model context length (None uses model default)
|
| 201 |
tensor_parallel_size: Number of GPUs to use (auto-detect if None)
|
| 202 |
skip_long_prompts: Skip prompts exceeding max_model_len instead of failing
|
|
|
|
| 203 |
hf_token: Hugging Face authentication token
|
| 204 |
"""
|
| 205 |
generation_start_time = datetime.now().isoformat()
|
|
@@ -261,15 +266,34 @@ def main(
|
|
| 261 |
# Load dataset
|
| 262 |
logger.info(f"Loading dataset: {src_dataset_hub_id}")
|
| 263 |
dataset = load_dataset(src_dataset_hub_id, split="train")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 264 |
total_examples = len(dataset)
|
| 265 |
logger.info(f"Dataset loaded with {total_examples:,} examples")
|
| 266 |
|
| 267 |
-
#
|
| 268 |
-
if
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 273 |
|
| 274 |
# Get effective max length for filtering
|
| 275 |
if max_model_len is not None:
|
|
@@ -280,18 +304,29 @@ def main(
|
|
| 280 |
logger.info(f"Using effective max model length: {effective_max_len}")
|
| 281 |
|
| 282 |
# Process messages and apply chat template
|
| 283 |
-
logger.info("
|
| 284 |
all_prompts = []
|
| 285 |
valid_prompts = []
|
| 286 |
valid_indices = []
|
| 287 |
skipped_info = []
|
| 288 |
|
| 289 |
-
for i, example in enumerate(tqdm(dataset, desc="Processing
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 295 |
all_prompts.append(prompt)
|
| 296 |
|
| 297 |
# Count tokens if filtering is enabled
|
|
@@ -352,6 +387,7 @@ def main(
|
|
| 352 |
source_dataset=src_dataset_hub_id,
|
| 353 |
model_id=model_id,
|
| 354 |
messages_column=messages_column,
|
|
|
|
| 355 |
sampling_params=sampling_params,
|
| 356 |
tensor_parallel_size=tensor_parallel_size,
|
| 357 |
num_examples=total_examples,
|
|
@@ -419,12 +455,22 @@ Examples:
|
|
| 419 |
default="messages",
|
| 420 |
help="Column containing chat messages (default: messages)",
|
| 421 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 422 |
parser.add_argument(
|
| 423 |
"--output-column",
|
| 424 |
type=str,
|
| 425 |
default="response",
|
| 426 |
help="Column name for generated responses (default: response)",
|
| 427 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 428 |
parser.add_argument(
|
| 429 |
"--temperature",
|
| 430 |
type=float,
|
|
@@ -502,6 +548,7 @@ Examples:
|
|
| 502 |
output_dataset_hub_id=args.output_dataset_hub_id,
|
| 503 |
model_id=args.model_id,
|
| 504 |
messages_column=args.messages_column,
|
|
|
|
| 505 |
output_column=args.output_column,
|
| 506 |
temperature=args.temperature,
|
| 507 |
top_p=args.top_p,
|
|
@@ -513,6 +560,7 @@ Examples:
|
|
| 513 |
max_model_len=args.max_model_len,
|
| 514 |
tensor_parallel_size=args.tensor_parallel_size,
|
| 515 |
skip_long_prompts=args.skip_long_prompts,
|
|
|
|
| 516 |
hf_token=args.hf_token,
|
| 517 |
)
|
| 518 |
else:
|
|
|
|
| 82 |
source_dataset: str,
|
| 83 |
model_id: str,
|
| 84 |
messages_column: str,
|
| 85 |
+
prompt_column: Optional[str],
|
| 86 |
sampling_params: SamplingParams,
|
| 87 |
tensor_parallel_size: int,
|
| 88 |
num_examples: int,
|
|
|
|
| 120 |
## Generation Details
|
| 121 |
|
| 122 |
- **Source Dataset**: [{source_dataset}](https://huggingface.co/datasets/{source_dataset})
|
| 123 |
+
- **Input Column**: `{prompt_column if prompt_column else messages_column}` ({'plain text prompts' if prompt_column else 'chat messages'})
|
| 124 |
- **Model**: [{model_id}](https://huggingface.co/{model_id})
|
| 125 |
- **Number of Examples**: {num_examples:,}
|
| 126 |
- **Generation Date**: {generation_time}{filtering_section}
|
|
|
|
| 155 |
{source_dataset} \\
|
| 156 |
<output-dataset> \\
|
| 157 |
--model-id {model_id} \\
|
| 158 |
+
{'--prompt-column ' + prompt_column if prompt_column else '--messages-column ' + messages_column} \\
|
| 159 |
--temperature {sampling_params.temperature} \\
|
| 160 |
--top-p {sampling_params.top_p} \\
|
| 161 |
--top-k {sampling_params.top_k} \\
|
|
|
|
| 169 |
output_dataset_hub_id: str,
|
| 170 |
model_id: str = "Qwen/Qwen3-30B-A3B-Instruct-2507",
|
| 171 |
messages_column: str = "messages",
|
| 172 |
+
prompt_column: Optional[str] = None,
|
| 173 |
output_column: str = "response",
|
| 174 |
temperature: float = 0.7,
|
| 175 |
top_p: float = 0.8,
|
|
|
|
| 181 |
max_model_len: Optional[int] = None,
|
| 182 |
tensor_parallel_size: Optional[int] = None,
|
| 183 |
skip_long_prompts: bool = True,
|
| 184 |
+
max_samples: Optional[int] = None,
|
| 185 |
hf_token: Optional[str] = None,
|
| 186 |
):
|
| 187 |
"""
|
|
|
|
| 192 |
output_dataset_hub_id: Where to save results on Hugging Face Hub
|
| 193 |
model_id: Hugging Face model ID for generation
|
| 194 |
messages_column: Column name containing chat messages
|
| 195 |
+
prompt_column: Column name containing plain text prompts (alternative to messages_column)
|
| 196 |
output_column: Column name for generated responses
|
| 197 |
temperature: Sampling temperature
|
| 198 |
top_p: Top-p sampling parameter
|
|
|
|
| 204 |
max_model_len: Maximum model context length (None uses model default)
|
| 205 |
tensor_parallel_size: Number of GPUs to use (auto-detect if None)
|
| 206 |
skip_long_prompts: Skip prompts exceeding max_model_len instead of failing
|
| 207 |
+
max_samples: Maximum number of samples to process (None for all)
|
| 208 |
hf_token: Hugging Face authentication token
|
| 209 |
"""
|
| 210 |
generation_start_time = datetime.now().isoformat()
|
|
|
|
| 266 |
# Load dataset
|
| 267 |
logger.info(f"Loading dataset: {src_dataset_hub_id}")
|
| 268 |
dataset = load_dataset(src_dataset_hub_id, split="train")
|
| 269 |
+
|
| 270 |
+
# Apply max_samples if specified
|
| 271 |
+
if max_samples is not None and max_samples < len(dataset):
|
| 272 |
+
logger.info(f"Limiting dataset to {max_samples} samples")
|
| 273 |
+
dataset = dataset.select(range(max_samples))
|
| 274 |
+
|
| 275 |
total_examples = len(dataset)
|
| 276 |
logger.info(f"Dataset loaded with {total_examples:,} examples")
|
| 277 |
|
| 278 |
+
# Determine which column to use and validate
|
| 279 |
+
if prompt_column:
|
| 280 |
+
# Use prompt column mode
|
| 281 |
+
if prompt_column not in dataset.column_names:
|
| 282 |
+
logger.error(
|
| 283 |
+
f"Column '{prompt_column}' not found. Available columns: {dataset.column_names}"
|
| 284 |
+
)
|
| 285 |
+
sys.exit(1)
|
| 286 |
+
logger.info(f"Using prompt column mode with column: '{prompt_column}'")
|
| 287 |
+
use_messages = False
|
| 288 |
+
else:
|
| 289 |
+
# Use messages column mode
|
| 290 |
+
if messages_column not in dataset.column_names:
|
| 291 |
+
logger.error(
|
| 292 |
+
f"Column '{messages_column}' not found. Available columns: {dataset.column_names}"
|
| 293 |
+
)
|
| 294 |
+
sys.exit(1)
|
| 295 |
+
logger.info(f"Using messages column mode with column: '{messages_column}'")
|
| 296 |
+
use_messages = True
|
| 297 |
|
| 298 |
# Get effective max length for filtering
|
| 299 |
if max_model_len is not None:
|
|
|
|
| 304 |
logger.info(f"Using effective max model length: {effective_max_len}")
|
| 305 |
|
| 306 |
# Process messages and apply chat template
|
| 307 |
+
logger.info("Preparing prompts...")
|
| 308 |
all_prompts = []
|
| 309 |
valid_prompts = []
|
| 310 |
valid_indices = []
|
| 311 |
skipped_info = []
|
| 312 |
|
| 313 |
+
for i, example in enumerate(tqdm(dataset, desc="Processing prompts")):
|
| 314 |
+
if use_messages:
|
| 315 |
+
# Messages mode: use existing chat messages
|
| 316 |
+
messages = example[messages_column]
|
| 317 |
+
# Apply chat template
|
| 318 |
+
prompt = tokenizer.apply_chat_template(
|
| 319 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 320 |
+
)
|
| 321 |
+
else:
|
| 322 |
+
# Prompt mode: convert plain text to messages format
|
| 323 |
+
user_prompt = example[prompt_column]
|
| 324 |
+
messages = [{"role": "user", "content": user_prompt}]
|
| 325 |
+
# Apply chat template
|
| 326 |
+
prompt = tokenizer.apply_chat_template(
|
| 327 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 328 |
+
)
|
| 329 |
+
|
| 330 |
all_prompts.append(prompt)
|
| 331 |
|
| 332 |
# Count tokens if filtering is enabled
|
|
|
|
| 387 |
source_dataset=src_dataset_hub_id,
|
| 388 |
model_id=model_id,
|
| 389 |
messages_column=messages_column,
|
| 390 |
+
prompt_column=prompt_column,
|
| 391 |
sampling_params=sampling_params,
|
| 392 |
tensor_parallel_size=tensor_parallel_size,
|
| 393 |
num_examples=total_examples,
|
|
|
|
| 455 |
default="messages",
|
| 456 |
help="Column containing chat messages (default: messages)",
|
| 457 |
)
|
| 458 |
+
parser.add_argument(
|
| 459 |
+
"--prompt-column",
|
| 460 |
+
type=str,
|
| 461 |
+
help="Column containing plain text prompts (alternative to --messages-column)",
|
| 462 |
+
)
|
| 463 |
parser.add_argument(
|
| 464 |
"--output-column",
|
| 465 |
type=str,
|
| 466 |
default="response",
|
| 467 |
help="Column name for generated responses (default: response)",
|
| 468 |
)
|
| 469 |
+
parser.add_argument(
|
| 470 |
+
"--max-samples",
|
| 471 |
+
type=int,
|
| 472 |
+
help="Maximum number of samples to process (default: all)",
|
| 473 |
+
)
|
| 474 |
parser.add_argument(
|
| 475 |
"--temperature",
|
| 476 |
type=float,
|
|
|
|
| 548 |
output_dataset_hub_id=args.output_dataset_hub_id,
|
| 549 |
model_id=args.model_id,
|
| 550 |
messages_column=args.messages_column,
|
| 551 |
+
prompt_column=args.prompt_column,
|
| 552 |
output_column=args.output_column,
|
| 553 |
temperature=args.temperature,
|
| 554 |
top_p=args.top_p,
|
|
|
|
| 560 |
max_model_len=args.max_model_len,
|
| 561 |
tensor_parallel_size=args.tensor_parallel_size,
|
| 562 |
skip_long_prompts=args.skip_long_prompts,
|
| 563 |
+
max_samples=args.max_samples,
|
| 564 |
hf_token=args.hf_token,
|
| 565 |
)
|
| 566 |
else:
|