--- viewer: false tags: - uv-script - synthetic-data - openai-oss --- # 🚀 OpenAI GPT OSS Models - Simple Generation Script Generate synthetic datasets using OpenAI's GPT OSS models with transparent reasoning. Works on HuggingFace Jobs with L4 GPUs! ## ✅ Tested & Working Successfully tested on HF Jobs with `l4x4` flavor (4x L4 GPUs = 96GB total memory). ## 🚀 Getting Started with HF Jobs ### First-time Setup (2 minutes) 1. **Install HuggingFace CLI**: ```bash pip install huggingface-hub ``` 2. **Login to HuggingFace**: ```bash huggingface-cli login ``` (Enter your HF token when prompted - get one at https://huggingface.co/settings/tokens) 3. **Run the script on HF Jobs**: ```bash hf jobs uv run --flavor l4x4 --secrets HF_TOKEN=hf_*** \ https://huggingface.co/datasets/uv-scripts/openai-oss/raw/main/gpt_oss_minimal.py \ --input-dataset davanstrien/haiku_dpo \ --output-dataset YOUR_USERNAME/gpt-oss-test \ --prompt-column question \ --max-samples 2 ``` That's it! Your job will run on HuggingFace's GPUs and the output dataset will appear in your HF account. ## 🌟 Quick Start ```bash # Run on HF Jobs (tested and working) hf jobs uv run --flavor l4x4 --secrets HF_TOKEN=hf_*** \ https://huggingface.co/datasets/uv-scripts/openai-oss/raw/main/gpt_oss_minimal.py \ --input-dataset davanstrien/haiku_dpo \ --output-dataset username/gpt-oss-haiku \ --prompt-column question \ --max-samples 2 \ --reasoning-effort high ``` ## 📋 Script Options | Option | Description | Default | | -------------------- | -------------------------------- | -------------------------- | | `--input-dataset` | HuggingFace dataset to process | Required | | `--output-dataset` | Output dataset name | Required | | `--prompt-column` | Column containing prompts | `prompt` | | `--model-id` | Model to use | `openai/gpt-oss-20b` | | `--max-samples` | Limit samples to process | None (all) | | `--max-new-tokens` | Max tokens to generate | Auto-scales: 512/1024/2048 | | `--reasoning-effort` | Reasoning depth: low/medium/high | `medium` | | `--temperature` | Sampling temperature | `1.0` | | `--top-p` | Top-p sampling | `1.0` | **Note**: `max-new-tokens` auto-scales based on `reasoning-effort` if not set: - `low`: 512 tokens - `medium`: 1024 tokens - `high`: 2048 tokens (prevents truncation of detailed reasoning) ## 💡 What You Get The output dataset contains: - `prompt`: Original prompt from input dataset - `raw_output`: Full model response with channel markers - `model`: Model ID used - `reasoning_effort`: The reasoning level used ### Understanding the Output The raw output contains special channel markers: - `<|channel|>analysis<|message|>` - Chain of thought reasoning - `<|channel|>final<|message|>` - The actual response Example raw output structure: ``` <|channel|>analysis<|message|> [Reasoning about the task...] <|channel|>final<|message|> [Actual haiku or response] ``` ## 🎯 Examples ### Test with Different Reasoning Levels **High reasoning (most detailed):** ```bash hf jobs uv run --flavor l4x4 --secrets HF_TOKEN=hf_*** \ https://huggingface.co/datasets/uv-scripts/openai-oss/raw/main/gpt_oss_minimal.py \ --input-dataset davanstrien/haiku_dpo \ --output-dataset username/haiku-high \ --prompt-column question \ --reasoning-effort high \ --max-samples 5 ``` **Low reasoning (fastest):** ```bash hf jobs uv run --flavor l4x4 --secrets HF_TOKEN=hf_*** \ https://huggingface.co/datasets/uv-scripts/openai-oss/raw/main/gpt_oss_minimal.py \ --input-dataset davanstrien/haiku_dpo \ --output-dataset username/haiku-low \ --prompt-column question \ --reasoning-effort low \ --max-samples 10 ``` ## 🖥️ GPU Requirements | Model | Memory Required | Recommended Flavor | | ---------------------- | --------------- | ---------------------- | | **openai/gpt-oss-20b** | ~40GB | `l4x4` (4x24GB = 96GB) | **Note**: The 20B model automatically dequantizes from MXFP4 to bf16 on non-Hopper GPUs, requiring more memory than the quantized size. ### Reasoning Effort The `reasoning_effort` parameter controls how much chain-of-thought reasoning the model generates: - `low`: Quick responses with minimal reasoning - `medium`: Balanced reasoning (default) - `high`: Detailed step-by-step reasoning ### Sampling Parameters OpenAI recommends `temperature=1.0` and `top_p=1.0` as defaults for GPT OSS models: - These settings provide good diversity without compromising quality - The model was trained to work well with these parameters - Adjust only if you need specific behavior (e.g., lower temperature for more deterministic output) ## 📚 Resources - [OpenAI GPT OSS Model Collection](https://huggingface.co/collections/openai/gpt-oss-68911959590a1634ba11c7a4) - Both 20B and 120B models - [Model: openai/gpt-oss-20b](https://huggingface.co/openai/gpt-oss-20b) - [HF Jobs Documentation](https://huggingface.co/docs/huggingface_hub/guides/jobs) - Complete guide to running jobs on HuggingFace - [HF CLI Guide](https://huggingface.co/docs/huggingface_hub/guides/cli) - HuggingFace CLI installation and usage - [Dataset: davanstrien/haiku_dpo](https://huggingface.co/datasets/davanstrien/haiku_dpo) --- _Last tested: 2025-01-06 on HF Jobs with l4x4 flavor_