# 🚀 OpenAI GPT OSS Models - Works on Regular GPUs! Generate synthetic datasets with transparent reasoning using OpenAI's GPT OSS models. **No H100s required** - works on L4, A100, A10G, and even T4 GPUs! ## 🎉 Key Discovery **The models work on regular datacenter GPUs!** Transformers automatically handles MXFP4 → bf16 conversion, making these models accessible on standard hardware. ## 🌟 Quick Start ### Test Locally (Single Prompt) ```bash uv run gpt_oss_transformers.py --prompt "Write a haiku about mountains" ``` ### Run on HuggingFace Jobs (No GPU Required!) ```bash # Generate haiku with reasoning (~$1.50/hr on A10G) hf jobs uv run --flavor a10g-small \ https://huggingface.co/datasets/uv-scripts/openai-oss/raw/main/gpt_oss_transformers.py \ --input-dataset davanstrien/haiku_dpo \ --output-dataset username/haiku-reasoning \ --prompt-column question \ --max-samples 50 ``` ## 💡 What You Get The models output structured reasoning in separate channels: **Raw Output**: ``` analysisI need to write a haiku about mountains. Haiku: 5-7-5 syllable structure... assistantfinalSilent peaks climb high, Echoing winds trace stone's breath, Dawn paints them gold bright. ``` **Parsed Dataset**: ```json { "prompt": "Write a haiku about mountains", "think": "[Analysis] I need to write a haiku about mountains. Haiku: 5-7-5 syllable structure...", "content": "Silent peaks climb high,\nEchoing winds trace stone's breath,\nDawn paints them gold bright.", "reasoning_level": "high", "model": "openai/gpt-oss-20b" } ``` ## 🖥️ GPU Requirements ### ✅ Confirmed Working GPUs | GPU | Memory | Status | Notes | |-----|--------|--------|-------| | **L4** | 24GB | ✅ Tested | Works perfectly! | | **A100** | 40/80GB | ✅ Works | Great performance | | **A10G** | 24GB | ✅ Recommended | Best value at $1.50/hr | | **T4** | 16GB | ⚠️ Limited | May need 8-bit for 20B | | **RTX 4090** | 24GB | ✅ Works | Consumer GPU support | ### Memory Requirements - **20B model**: ~40GB VRAM when dequantized (use A100-40GB or 2xL4) - **120B model**: ~240GB VRAM when dequantized (use 4xA100-80GB) ## 🎯 Examples ### Creative Writing with Reasoning ```bash # Process haiku dataset with high reasoning uv run gpt_oss_transformers.py \ --input-dataset davanstrien/haiku_dpo \ --output-dataset my-haiku-reasoning \ --prompt-column question \ --reasoning-level high \ --max-samples 100 ``` ### Math Problems with Step-by-Step Solutions ```bash # Generate math solutions with reasoning traces uv run gpt_oss_transformers.py \ --input-dataset gsm8k \ --output-dataset math-with-reasoning \ --prompt-column question \ --reasoning-level high ``` ### Test Different Reasoning Levels ```bash # Compare reasoning levels for level in low medium high; do echo "Testing: $level" uv run gpt_oss_transformers.py \ --prompt "Explain gravity to a 5-year-old" \ --reasoning-level $level \ --debug done ``` ## 📋 Script Options | Option | Description | Default | |--------|-------------|---------| | `--input-dataset` | HuggingFace dataset to process | - | | `--output-dataset` | Output dataset name | - | | `--prompt-column` | Column with prompts | `prompt` | | `--model-id` | Model to use | `openai/gpt-oss-20b` | | `--reasoning-level` | Reasoning depth: low/medium/high | `high` | | `--max-samples` | Limit samples to process | None | | `--temperature` | Sampling temperature | `0.7` | | `--max-tokens` | Max tokens to generate | `512` | | `--prompt` | Single prompt test (skip dataset) | - | | `--debug` | Show raw model output | `False` | ## 🔧 Technical Details ### Why It Works Without H100s 1. **Automatic MXFP4 Handling**: When your GPU doesn't support MXFP4, you'll see: ``` MXFP4 quantization requires triton >= 3.4.0 and triton_kernels installed, we will default to dequantizing the model to bf16 ``` 2. **No Flash Attention 3 Required**: FA3 needs Hopper architecture, but models work fine without it 3. **Simple Loading**: Just use standard transformers: ```python model = AutoModelForCausalLM.from_pretrained( "openai/gpt-oss-20b", torch_dtype=torch.bfloat16, device_map="auto" ) ``` ### Channel Output Format The models use a simplified channel format: - `analysis`: Chain of thought reasoning - `commentary`: Meta operations (optional) - `final`: User-facing response ### Reasoning Control Control reasoning depth via system message: ```python messages = [ { "role": "system", "content": f"...Reasoning: {level}..." }, {"role": "user", "content": prompt} ] ``` ## 🚨 Best Practices 1. **Token Limits**: Use 1000+ tokens for detailed reasoning 2. **Security**: Never expose reasoning channels to end users 3. **Batch Size**: Keep at 1 for memory efficiency 4. **Reasoning Levels**: - `low`: Quick responses - `medium`: Balanced reasoning - `high`: Detailed chain-of-thought ## 🐛 Troubleshooting ### Out of Memory - Use larger GPU flavor: `--flavor a100-large` - Reduce batch size to 1 - Try 8-bit quantization for smaller GPUs ### No GPU Available - Use HuggingFace Jobs (no local GPU needed!) - Or use cloud instances with GPU support ### Empty Reasoning - Increase `--max-tokens` to 1500+ - Ensure prompts trigger reasoning ## 📚 References - [OpenAI Cookbook: GPT OSS](https://cookbook.openai.com/articles/gpt-oss/run-transformers) - [Model: openai/gpt-oss-20b](https://huggingface.co/openai/gpt-oss-20b) - [HF Jobs Documentation](https://huggingface.co/docs/hub/spaces-gpu-jobs) ## 🎉 The Bottom Line **You don't need H100s!** These models work great on regular datacenter GPUs. Just run the script and start generating datasets with transparent reasoning. --- *Last tested: 2025-08-05 on NVIDIA L4 GPUs - Working perfectly!*