openai-oss / gpt_oss_transformers.py
davanstrien's picture
davanstrien HF Staff
Add automatic dataset card generation
f5e30d5
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "datasets",
# "huggingface-hub[hf_transfer]",
# "torch",
# "transformers>=4.45.0",
# "tqdm",
# "accelerate",
# ]
# ///
"""
Generate responses with transparent reasoning using OpenAI's open source GPT OSS models.
This implementation uses standard Transformers library for maximum compatibility.
The models output structured reasoning in separate channels, allowing you to
capture both the thinking process and final response.
Example usage:
# Generate haiku with reasoning
uv run gpt_oss_transformers.py \\
--input-dataset davanstrien/haiku_dpo \\
--output-dataset username/haiku-reasoning \\
--prompt-column question
# Any prompt dataset with custom settings
uv run gpt_oss_transformers.py \\
--input-dataset username/prompts \\
--output-dataset username/responses-with-reasoning \\
--prompt-column prompt \\
--reasoning-level high \\
--max-samples 100
# HF Jobs execution
hf jobs uv run --flavor a10g-small \\
https://huggingface.co/datasets/uv-scripts/openai-oss/raw/main/gpt_oss_transformers.py \\
--input-dataset username/prompts \\
--output-dataset username/responses-with-reasoning
"""
import argparse
import logging
import os
import re
import sys
from datetime import datetime
from typing import Dict, List, Optional
import torch
from datasets import Dataset, load_dataset
from huggingface_hub import DatasetCard, get_token, login
from tqdm.auto import tqdm
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
GenerationConfig,
set_seed,
)
# Enable HF Transfer for faster downloads
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
logging.basicConfig(
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
)
logger = logging.getLogger(__name__)
def check_gpu_availability() -> int:
"""Check if CUDA is available and return the number of GPUs."""
if not torch.cuda.is_available():
logger.error("CUDA is not available. This script requires a GPU.")
logger.error(
"Please run on a machine with NVIDIA GPU or use HF Jobs with GPU flavor."
)
sys.exit(1)
num_gpus = torch.cuda.device_count()
for i in range(num_gpus):
gpu_name = torch.cuda.get_device_name(i)
gpu_memory = torch.cuda.get_device_properties(i).total_memory / 1024**3
logger.info(f"GPU {i}: {gpu_name} with {gpu_memory:.1f} GB memory")
return num_gpus
def parse_channels(raw_output: str) -> Dict[str, str]:
"""
Extract think/content from GPT OSS channel-based output.
Expected format:
<|start|>assistant<|channel|>analysis<|message|>CHAIN_OF_THOUGHT<|end|>
<|start|>assistant<|channel|>final<|message|>ACTUAL_MESSAGE
"""
think = ""
content = ""
# Extract analysis channel (chain of thought)
analysis_pattern = (
r"<\|start\|>assistant<\|channel\|>analysis<\|message\|>(.*?)<\|end\|>"
)
analysis_match = re.search(analysis_pattern, raw_output, re.DOTALL)
if analysis_match:
think = analysis_match.group(1).strip()
# Extract final channel (user-facing content)
final_pattern = (
r"<\|start\|>assistant<\|channel\|>final<\|message\|>(.*?)(?:<\|end\|>|$)"
)
final_match = re.search(final_pattern, raw_output, re.DOTALL)
if final_match:
content = final_match[1].strip()
# If no channels found, treat entire output as content
if not think and not content:
content = raw_output.strip()
return {"think": think, "content": content, "raw_output": raw_output}
def create_dataset_card(
input_dataset: str,
model_id: str,
prompt_column: str,
reasoning_level: str,
num_examples: int,
generation_time: str,
num_gpus: int,
temperature: float,
max_tokens: int,
) -> str:
"""Create a dataset card documenting the generation process."""
return f"""---
tags:
- generated
- synthetic
- reasoning
- openai-gpt-oss
---
# Generated Responses with Reasoning (Transformers)
This dataset contains AI-generated responses with transparent chain-of-thought reasoning using OpenAI GPT OSS models via Transformers.
## Generation Details
- **Source Dataset**: [{input_dataset}](https://huggingface.co/datasets/{input_dataset})
- **Model**: [{model_id}](https://huggingface.co/{model_id})
- **Reasoning Level**: {reasoning_level}
- **Number of Examples**: {num_examples:,}
- **Generation Date**: {generation_time}
- **Implementation**: Transformers (fallback)
- **GPUs Used**: {num_gpus}
## Dataset Structure
Each example contains:
- `prompt`: The input prompt from the source dataset
- `think`: The model's internal reasoning process
- `content`: The final response
- `raw_output`: Complete model output with channel markers
- `reasoning_level`: The reasoning effort level used
- `model`: Model identifier
## Generation Script
Generated using [uv-scripts/openai-oss](https://huggingface.co/datasets/uv-scripts/openai-oss).
To reproduce:
```bash
uv run gpt_oss_transformers.py \\
--input-dataset {input_dataset} \\
--output-dataset <your-dataset> \\
--prompt-column {prompt_column} \\
--model-id {model_id} \\
--reasoning-level {reasoning_level}
```
"""
def main(
input_dataset: str,
output_dataset_hub_id: str,
prompt_column: str = "prompt",
model_id: str = "openai/gpt-oss-20b",
reasoning_level: str = "high",
max_samples: Optional[int] = None,
temperature: float = 0.7,
max_tokens: int = 512,
batch_size: int = 1,
seed: int = 42,
hf_token: Optional[str] = None,
):
"""
Main generation pipeline using Transformers.
Args:
input_dataset: Source dataset on Hugging Face Hub
output_dataset_hub_id: Where to save results on Hugging Face Hub
prompt_column: Column containing the prompts
model_id: OpenAI GPT OSS model to use
reasoning_level: Reasoning effort level (high/medium/low)
max_samples: Maximum number of samples to process
temperature: Sampling temperature
max_tokens: Maximum tokens to generate
batch_size: Batch size for generation
seed: Random seed for reproducibility
hf_token: Hugging Face authentication token
"""
generation_start_time = datetime.now().isoformat()
set_seed(seed)
# GPU check
num_gpus = check_gpu_availability()
# Authentication
HF_TOKEN = hf_token or os.environ.get("HF_TOKEN") or get_token()
if not HF_TOKEN:
logger.error("No HuggingFace token found. Please provide token via:")
logger.error(" 1. --hf-token argument")
logger.error(" 2. HF_TOKEN environment variable")
logger.error(" 3. Run 'huggingface-cli login'")
sys.exit(1)
logger.info("HuggingFace token found, authenticating...")
login(token=HF_TOKEN)
# Load tokenizer
logger.info(f"Loading tokenizer: {model_id}")
tokenizer = AutoTokenizer.from_pretrained(
model_id, padding_side="left" if "120b" in model_id else "right"
)
# Add padding token if needed
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# Model loading configuration
device_map = {"tp_plan": "auto"} if "120b" in model_id else "auto"
# Load model
logger.info(f"Loading model: {model_id}")
logger.info("This may take a few minutes for large models...")
try:
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.bfloat16,
**device_map,
)
model.eval()
except Exception as e:
logger.error(f"Failed to load model: {e}")
logger.error("Trying with default configuration...")
# Fallback to simpler loading
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype="auto",
device_map="auto",
)
model.eval()
# Generation configuration
generation_config = GenerationConfig(
max_new_tokens=max_tokens,
temperature=temperature,
do_sample=temperature > 0,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
)
# Load dataset
logger.info(f"Loading dataset: {input_dataset}")
dataset = load_dataset(input_dataset, split="train")
# Validate prompt column
if prompt_column not in dataset.column_names:
logger.error(
f"Column '{prompt_column}' not found. Available columns: {dataset.column_names}"
)
sys.exit(1)
# Limit samples if requested
if max_samples:
dataset = dataset.select(range(min(max_samples, len(dataset))))
total_examples = len(dataset)
logger.info(f"Processing {total_examples:,} examples")
# Prepare prompts with reasoning control
logger.info(f"Applying chat template with reasoning_level={reasoning_level}...")
prompts = []
original_prompts = []
for example in tqdm(dataset, desc="Preparing prompts"):
prompt_text = example[prompt_column]
original_prompts.append(prompt_text)
# Create message format (using user role only as per documentation)
messages = [{"role": "user", "content": prompt_text}]
# Apply chat template with reasoning effort
try:
prompt = tokenizer.apply_chat_template(
messages,
reasoning_effort=reasoning_level,
add_generation_prompt=True,
tokenize=False,
)
except TypeError:
# Fallback if reasoning_effort parameter not supported
logger.warning(
"reasoning_effort parameter not supported, using standard template"
)
prompt = tokenizer.apply_chat_template(
messages, add_generation_prompt=True, tokenize=False
)
prompts.append(prompt)
# Generate responses in batches
logger.info(f"Starting generation for {len(prompts):,} prompts...")
results = []
for i in tqdm(range(0, len(prompts), batch_size), desc="Generating"):
batch_prompts = prompts[i : i + batch_size]
batch_original = original_prompts[i : i + batch_size]
# Tokenize batch
inputs = tokenizer(
batch_prompts, return_tensors="pt", padding=True, truncation=True
).to(model.device)
# Generate
with torch.no_grad():
outputs = model.generate(**inputs, generation_config=generation_config)
# Decode and parse
for j, output in enumerate(outputs):
# Decode without input prompt
output_ids = output[inputs.input_ids.shape[1] :]
raw_output = tokenizer.decode(output_ids, skip_special_tokens=False)
parsed = parse_channels(raw_output)
result = {
"prompt": batch_original[j],
"think": parsed["think"],
"content": parsed["content"],
"raw_output": parsed["raw_output"],
"reasoning_level": reasoning_level,
"model": model_id,
}
results.append(result)
# Create dataset
logger.info("Creating output dataset...")
output_dataset = Dataset.from_list(results)
# Create dataset card
logger.info("Creating dataset card...")
card_content = create_dataset_card(
input_dataset=input_dataset,
model_id=model_id,
prompt_column=prompt_column,
reasoning_level=reasoning_level,
num_examples=total_examples,
generation_time=generation_start_time,
num_gpus=num_gpus,
temperature=temperature,
max_tokens=max_tokens,
)
# Push to hub
logger.info(f"Pushing dataset to: {output_dataset_hub_id}")
output_dataset.push_to_hub(output_dataset_hub_id, token=HF_TOKEN)
# Push dataset card
card = DatasetCard(card_content)
card.push_to_hub(output_dataset_hub_id, token=HF_TOKEN)
logger.info("✅ Generation complete!")
logger.info(
f"Dataset available at: https://huggingface.co/datasets/{output_dataset_hub_id}"
)
if __name__ == "__main__":
if len(sys.argv) > 1:
parser = argparse.ArgumentParser(
description="Generate responses with reasoning using OpenAI GPT OSS models (Transformers)",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
Examples:
# Generate haiku with reasoning
uv run gpt_oss_transformers.py \\
--input-dataset davanstrien/haiku_dpo \\
--output-dataset username/haiku-reasoning \\
--prompt-column question
# Any prompt dataset
uv run gpt_oss_transformers.py \\
--input-dataset username/prompts \\
--output-dataset username/responses-reasoning \\
--reasoning-level high \\
--max-samples 100
# Use larger 120B model (requires 80GB+ GPU)
uv run gpt_oss_transformers.py \\
--input-dataset username/prompts \\
--output-dataset username/responses-reasoning \\
--model-id openai/gpt-oss-120b
""",
)
parser.add_argument(
"--input-dataset",
type=str,
required=True,
help="Input dataset on Hugging Face Hub",
)
parser.add_argument(
"--output-dataset",
type=str,
required=True,
help="Output dataset name on Hugging Face Hub",
)
parser.add_argument(
"--prompt-column",
type=str,
default="prompt",
help="Column containing prompts (default: prompt)",
)
parser.add_argument(
"--model-id",
type=str,
default="openai/gpt-oss-20b",
help="Model to use (default: openai/gpt-oss-20b)",
)
parser.add_argument(
"--reasoning-level",
type=str,
choices=["high", "medium", "low"],
default="high",
help="Reasoning effort level (default: high)",
)
parser.add_argument(
"--max-samples", type=int, help="Maximum number of samples to process"
)
parser.add_argument(
"--temperature",
type=float,
default=0.7,
help="Sampling temperature (default: 0.7)",
)
parser.add_argument(
"--max-tokens",
type=int,
default=512,
help="Maximum tokens to generate (default: 512)",
)
parser.add_argument(
"--batch-size",
type=int,
default=1,
help="Batch size for generation (default: 1)",
)
parser.add_argument(
"--seed",
type=int,
default=42,
help="Random seed (default: 42)",
)
parser.add_argument(
"--hf-token",
type=str,
help="Hugging Face token (can also use HF_TOKEN env var)",
)
args = parser.parse_args()
main(
input_dataset=args.input_dataset,
output_dataset_hub_id=args.output_dataset,
prompt_column=args.prompt_column,
model_id=args.model_id,
reasoning_level=args.reasoning_level,
max_samples=args.max_samples,
temperature=args.temperature,
max_tokens=args.max_tokens,
batch_size=args.batch_size,
seed=args.seed,
hf_token=args.hf_token,
)
else:
# Show HF Jobs example when run without arguments
print("""
OpenAI GPT OSS Reasoning Generation Script (Transformers)
========================================================
This script requires arguments. For usage information:
uv run gpt_oss_transformers.py --help
Example HF Jobs command for 20B model:
hf jobs uv run \\
--flavor a10g-small \\
https://huggingface.co/datasets/uv-scripts/openai-oss/raw/main/gpt_oss_transformers.py \\
--input-dataset davanstrien/haiku_dpo \\
--output-dataset username/haiku-reasoning \\
--prompt-column question \\
--reasoning-level high
Example HF Jobs command for 120B model:
hf jobs uv run \\
--flavor a100-large \\
https://huggingface.co/datasets/uv-scripts/openai-oss/raw/main/gpt_oss_transformers.py \\
--input-dataset username/prompts \\
--output-dataset username/responses-reasoning \\
--model-id openai/gpt-oss-120b \\
--reasoning-level high
""")