|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Generate responses with transparent reasoning using OpenAI's open source GPT OSS models. |
|
|
|
This implementation uses standard Transformers library for maximum compatibility. |
|
The models output structured reasoning in separate channels, allowing you to |
|
capture both the thinking process and final response. |
|
|
|
Example usage: |
|
# Generate haiku with reasoning |
|
uv run gpt_oss_transformers.py \\ |
|
--input-dataset davanstrien/haiku_dpo \\ |
|
--output-dataset username/haiku-reasoning \\ |
|
--prompt-column question |
|
|
|
# Any prompt dataset with custom settings |
|
uv run gpt_oss_transformers.py \\ |
|
--input-dataset username/prompts \\ |
|
--output-dataset username/responses-with-reasoning \\ |
|
--prompt-column prompt \\ |
|
--reasoning-level high \\ |
|
--max-samples 100 |
|
|
|
# HF Jobs execution |
|
hf jobs uv run --flavor a10g-small \\ |
|
https://huggingface.co/datasets/uv-scripts/openai-oss/raw/main/gpt_oss_transformers.py \\ |
|
--input-dataset username/prompts \\ |
|
--output-dataset username/responses-with-reasoning |
|
""" |
|
|
|
import argparse |
|
import logging |
|
import os |
|
import re |
|
import sys |
|
from datetime import datetime |
|
from typing import Dict, List, Optional |
|
|
|
import torch |
|
from datasets import Dataset, load_dataset |
|
from huggingface_hub import DatasetCard, get_token, login |
|
from tqdm.auto import tqdm |
|
from transformers import ( |
|
AutoModelForCausalLM, |
|
AutoTokenizer, |
|
GenerationConfig, |
|
set_seed, |
|
) |
|
|
|
|
|
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1" |
|
|
|
logging.basicConfig( |
|
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s" |
|
) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
def check_gpu_availability() -> int: |
|
"""Check if CUDA is available and return the number of GPUs.""" |
|
if not torch.cuda.is_available(): |
|
logger.error("CUDA is not available. This script requires a GPU.") |
|
logger.error( |
|
"Please run on a machine with NVIDIA GPU or use HF Jobs with GPU flavor." |
|
) |
|
sys.exit(1) |
|
|
|
num_gpus = torch.cuda.device_count() |
|
for i in range(num_gpus): |
|
gpu_name = torch.cuda.get_device_name(i) |
|
gpu_memory = torch.cuda.get_device_properties(i).total_memory / 1024**3 |
|
logger.info(f"GPU {i}: {gpu_name} with {gpu_memory:.1f} GB memory") |
|
|
|
return num_gpus |
|
|
|
|
|
def parse_channels(raw_output: str) -> Dict[str, str]: |
|
""" |
|
Extract think/content from GPT OSS channel-based output. |
|
|
|
Expected format: |
|
<|start|>assistant<|channel|>analysis<|message|>CHAIN_OF_THOUGHT<|end|> |
|
<|start|>assistant<|channel|>final<|message|>ACTUAL_MESSAGE |
|
""" |
|
think = "" |
|
content = "" |
|
|
|
|
|
analysis_pattern = ( |
|
r"<\|start\|>assistant<\|channel\|>analysis<\|message\|>(.*?)<\|end\|>" |
|
) |
|
analysis_match = re.search(analysis_pattern, raw_output, re.DOTALL) |
|
if analysis_match: |
|
think = analysis_match.group(1).strip() |
|
|
|
|
|
final_pattern = ( |
|
r"<\|start\|>assistant<\|channel\|>final<\|message\|>(.*?)(?:<\|end\|>|$)" |
|
) |
|
final_match = re.search(final_pattern, raw_output, re.DOTALL) |
|
if final_match: |
|
content = final_match[1].strip() |
|
|
|
|
|
if not think and not content: |
|
content = raw_output.strip() |
|
|
|
return {"think": think, "content": content, "raw_output": raw_output} |
|
|
|
|
|
def create_dataset_card( |
|
input_dataset: str, |
|
model_id: str, |
|
prompt_column: str, |
|
reasoning_level: str, |
|
num_examples: int, |
|
generation_time: str, |
|
num_gpus: int, |
|
temperature: float, |
|
max_tokens: int, |
|
) -> str: |
|
"""Create a dataset card documenting the generation process.""" |
|
return f"""--- |
|
tags: |
|
- generated |
|
- synthetic |
|
- reasoning |
|
- openai-gpt-oss |
|
--- |
|
|
|
# Generated Responses with Reasoning (Transformers) |
|
|
|
This dataset contains AI-generated responses with transparent chain-of-thought reasoning using OpenAI GPT OSS models via Transformers. |
|
|
|
## Generation Details |
|
|
|
- **Source Dataset**: [{input_dataset}](https://huggingface.co/datasets/{input_dataset}) |
|
- **Model**: [{model_id}](https://huggingface.co/{model_id}) |
|
- **Reasoning Level**: {reasoning_level} |
|
- **Number of Examples**: {num_examples:,} |
|
- **Generation Date**: {generation_time} |
|
- **Implementation**: Transformers (fallback) |
|
- **GPUs Used**: {num_gpus} |
|
|
|
## Dataset Structure |
|
|
|
Each example contains: |
|
- `prompt`: The input prompt from the source dataset |
|
- `think`: The model's internal reasoning process |
|
- `content`: The final response |
|
- `raw_output`: Complete model output with channel markers |
|
- `reasoning_level`: The reasoning effort level used |
|
- `model`: Model identifier |
|
|
|
## Generation Script |
|
|
|
Generated using [uv-scripts/openai-oss](https://huggingface.co/datasets/uv-scripts/openai-oss). |
|
|
|
To reproduce: |
|
```bash |
|
uv run gpt_oss_transformers.py \\ |
|
--input-dataset {input_dataset} \\ |
|
--output-dataset <your-dataset> \\ |
|
--prompt-column {prompt_column} \\ |
|
--model-id {model_id} \\ |
|
--reasoning-level {reasoning_level} |
|
``` |
|
""" |
|
|
|
|
|
def main( |
|
input_dataset: str, |
|
output_dataset_hub_id: str, |
|
prompt_column: str = "prompt", |
|
model_id: str = "openai/gpt-oss-20b", |
|
reasoning_level: str = "high", |
|
max_samples: Optional[int] = None, |
|
temperature: float = 0.7, |
|
max_tokens: int = 512, |
|
batch_size: int = 1, |
|
seed: int = 42, |
|
hf_token: Optional[str] = None, |
|
): |
|
""" |
|
Main generation pipeline using Transformers. |
|
|
|
Args: |
|
input_dataset: Source dataset on Hugging Face Hub |
|
output_dataset_hub_id: Where to save results on Hugging Face Hub |
|
prompt_column: Column containing the prompts |
|
model_id: OpenAI GPT OSS model to use |
|
reasoning_level: Reasoning effort level (high/medium/low) |
|
max_samples: Maximum number of samples to process |
|
temperature: Sampling temperature |
|
max_tokens: Maximum tokens to generate |
|
batch_size: Batch size for generation |
|
seed: Random seed for reproducibility |
|
hf_token: Hugging Face authentication token |
|
""" |
|
generation_start_time = datetime.now().isoformat() |
|
set_seed(seed) |
|
|
|
|
|
num_gpus = check_gpu_availability() |
|
|
|
|
|
HF_TOKEN = hf_token or os.environ.get("HF_TOKEN") or get_token() |
|
|
|
if not HF_TOKEN: |
|
logger.error("No HuggingFace token found. Please provide token via:") |
|
logger.error(" 1. --hf-token argument") |
|
logger.error(" 2. HF_TOKEN environment variable") |
|
logger.error(" 3. Run 'huggingface-cli login'") |
|
sys.exit(1) |
|
|
|
logger.info("HuggingFace token found, authenticating...") |
|
login(token=HF_TOKEN) |
|
|
|
|
|
logger.info(f"Loading tokenizer: {model_id}") |
|
tokenizer = AutoTokenizer.from_pretrained( |
|
model_id, padding_side="left" if "120b" in model_id else "right" |
|
) |
|
|
|
|
|
if tokenizer.pad_token is None: |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
|
|
device_map = {"tp_plan": "auto"} if "120b" in model_id else "auto" |
|
|
|
|
|
logger.info(f"Loading model: {model_id}") |
|
logger.info("This may take a few minutes for large models...") |
|
|
|
try: |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
torch_dtype=torch.bfloat16, |
|
**device_map, |
|
) |
|
model.eval() |
|
except Exception as e: |
|
logger.error(f"Failed to load model: {e}") |
|
logger.error("Trying with default configuration...") |
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_id, |
|
torch_dtype="auto", |
|
device_map="auto", |
|
) |
|
model.eval() |
|
|
|
|
|
generation_config = GenerationConfig( |
|
max_new_tokens=max_tokens, |
|
temperature=temperature, |
|
do_sample=temperature > 0, |
|
eos_token_id=tokenizer.eos_token_id, |
|
pad_token_id=tokenizer.pad_token_id, |
|
) |
|
|
|
|
|
logger.info(f"Loading dataset: {input_dataset}") |
|
dataset = load_dataset(input_dataset, split="train") |
|
|
|
|
|
if prompt_column not in dataset.column_names: |
|
logger.error( |
|
f"Column '{prompt_column}' not found. Available columns: {dataset.column_names}" |
|
) |
|
sys.exit(1) |
|
|
|
|
|
if max_samples: |
|
dataset = dataset.select(range(min(max_samples, len(dataset)))) |
|
total_examples = len(dataset) |
|
logger.info(f"Processing {total_examples:,} examples") |
|
|
|
|
|
logger.info(f"Applying chat template with reasoning_level={reasoning_level}...") |
|
prompts = [] |
|
original_prompts = [] |
|
|
|
for example in tqdm(dataset, desc="Preparing prompts"): |
|
prompt_text = example[prompt_column] |
|
original_prompts.append(prompt_text) |
|
|
|
|
|
messages = [{"role": "user", "content": prompt_text}] |
|
|
|
|
|
try: |
|
prompt = tokenizer.apply_chat_template( |
|
messages, |
|
reasoning_effort=reasoning_level, |
|
add_generation_prompt=True, |
|
tokenize=False, |
|
) |
|
except TypeError: |
|
|
|
logger.warning( |
|
"reasoning_effort parameter not supported, using standard template" |
|
) |
|
prompt = tokenizer.apply_chat_template( |
|
messages, add_generation_prompt=True, tokenize=False |
|
) |
|
prompts.append(prompt) |
|
|
|
|
|
logger.info(f"Starting generation for {len(prompts):,} prompts...") |
|
results = [] |
|
|
|
for i in tqdm(range(0, len(prompts), batch_size), desc="Generating"): |
|
batch_prompts = prompts[i : i + batch_size] |
|
batch_original = original_prompts[i : i + batch_size] |
|
|
|
|
|
inputs = tokenizer( |
|
batch_prompts, return_tensors="pt", padding=True, truncation=True |
|
).to(model.device) |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = model.generate(**inputs, generation_config=generation_config) |
|
|
|
|
|
for j, output in enumerate(outputs): |
|
|
|
output_ids = output[inputs.input_ids.shape[1] :] |
|
raw_output = tokenizer.decode(output_ids, skip_special_tokens=False) |
|
parsed = parse_channels(raw_output) |
|
|
|
result = { |
|
"prompt": batch_original[j], |
|
"think": parsed["think"], |
|
"content": parsed["content"], |
|
"raw_output": parsed["raw_output"], |
|
"reasoning_level": reasoning_level, |
|
"model": model_id, |
|
} |
|
results.append(result) |
|
|
|
|
|
logger.info("Creating output dataset...") |
|
output_dataset = Dataset.from_list(results) |
|
|
|
|
|
logger.info("Creating dataset card...") |
|
card_content = create_dataset_card( |
|
input_dataset=input_dataset, |
|
model_id=model_id, |
|
prompt_column=prompt_column, |
|
reasoning_level=reasoning_level, |
|
num_examples=total_examples, |
|
generation_time=generation_start_time, |
|
num_gpus=num_gpus, |
|
temperature=temperature, |
|
max_tokens=max_tokens, |
|
) |
|
|
|
|
|
logger.info(f"Pushing dataset to: {output_dataset_hub_id}") |
|
output_dataset.push_to_hub(output_dataset_hub_id, token=HF_TOKEN) |
|
|
|
|
|
card = DatasetCard(card_content) |
|
card.push_to_hub(output_dataset_hub_id, token=HF_TOKEN) |
|
|
|
logger.info("✅ Generation complete!") |
|
logger.info( |
|
f"Dataset available at: https://huggingface.co/datasets/{output_dataset_hub_id}" |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
if len(sys.argv) > 1: |
|
parser = argparse.ArgumentParser( |
|
description="Generate responses with reasoning using OpenAI GPT OSS models (Transformers)", |
|
formatter_class=argparse.RawDescriptionHelpFormatter, |
|
epilog=""" |
|
Examples: |
|
# Generate haiku with reasoning |
|
uv run gpt_oss_transformers.py \\ |
|
--input-dataset davanstrien/haiku_dpo \\ |
|
--output-dataset username/haiku-reasoning \\ |
|
--prompt-column question |
|
|
|
# Any prompt dataset |
|
uv run gpt_oss_transformers.py \\ |
|
--input-dataset username/prompts \\ |
|
--output-dataset username/responses-reasoning \\ |
|
--reasoning-level high \\ |
|
--max-samples 100 |
|
|
|
# Use larger 120B model (requires 80GB+ GPU) |
|
uv run gpt_oss_transformers.py \\ |
|
--input-dataset username/prompts \\ |
|
--output-dataset username/responses-reasoning \\ |
|
--model-id openai/gpt-oss-120b |
|
""", |
|
) |
|
|
|
parser.add_argument( |
|
"--input-dataset", |
|
type=str, |
|
required=True, |
|
help="Input dataset on Hugging Face Hub", |
|
) |
|
parser.add_argument( |
|
"--output-dataset", |
|
type=str, |
|
required=True, |
|
help="Output dataset name on Hugging Face Hub", |
|
) |
|
parser.add_argument( |
|
"--prompt-column", |
|
type=str, |
|
default="prompt", |
|
help="Column containing prompts (default: prompt)", |
|
) |
|
parser.add_argument( |
|
"--model-id", |
|
type=str, |
|
default="openai/gpt-oss-20b", |
|
help="Model to use (default: openai/gpt-oss-20b)", |
|
) |
|
parser.add_argument( |
|
"--reasoning-level", |
|
type=str, |
|
choices=["high", "medium", "low"], |
|
default="high", |
|
help="Reasoning effort level (default: high)", |
|
) |
|
parser.add_argument( |
|
"--max-samples", type=int, help="Maximum number of samples to process" |
|
) |
|
parser.add_argument( |
|
"--temperature", |
|
type=float, |
|
default=0.7, |
|
help="Sampling temperature (default: 0.7)", |
|
) |
|
parser.add_argument( |
|
"--max-tokens", |
|
type=int, |
|
default=512, |
|
help="Maximum tokens to generate (default: 512)", |
|
) |
|
parser.add_argument( |
|
"--batch-size", |
|
type=int, |
|
default=1, |
|
help="Batch size for generation (default: 1)", |
|
) |
|
parser.add_argument( |
|
"--seed", |
|
type=int, |
|
default=42, |
|
help="Random seed (default: 42)", |
|
) |
|
parser.add_argument( |
|
"--hf-token", |
|
type=str, |
|
help="Hugging Face token (can also use HF_TOKEN env var)", |
|
) |
|
|
|
args = parser.parse_args() |
|
|
|
main( |
|
input_dataset=args.input_dataset, |
|
output_dataset_hub_id=args.output_dataset, |
|
prompt_column=args.prompt_column, |
|
model_id=args.model_id, |
|
reasoning_level=args.reasoning_level, |
|
max_samples=args.max_samples, |
|
temperature=args.temperature, |
|
max_tokens=args.max_tokens, |
|
batch_size=args.batch_size, |
|
seed=args.seed, |
|
hf_token=args.hf_token, |
|
) |
|
else: |
|
|
|
print(""" |
|
OpenAI GPT OSS Reasoning Generation Script (Transformers) |
|
======================================================== |
|
|
|
This script requires arguments. For usage information: |
|
uv run gpt_oss_transformers.py --help |
|
|
|
Example HF Jobs command for 20B model: |
|
hf jobs uv run \\ |
|
--flavor a10g-small \\ |
|
https://huggingface.co/datasets/uv-scripts/openai-oss/raw/main/gpt_oss_transformers.py \\ |
|
--input-dataset davanstrien/haiku_dpo \\ |
|
--output-dataset username/haiku-reasoning \\ |
|
--prompt-column question \\ |
|
--reasoning-level high |
|
|
|
Example HF Jobs command for 120B model: |
|
hf jobs uv run \\ |
|
--flavor a100-large \\ |
|
https://huggingface.co/datasets/uv-scripts/openai-oss/raw/main/gpt_oss_transformers.py \\ |
|
--input-dataset username/prompts \\ |
|
--output-dataset username/responses-reasoning \\ |
|
--model-id openai/gpt-oss-120b \\ |
|
--reasoning-level high |
|
""") |
|
|