Commit
·
1d07414
1
Parent(s):
5c4f2fd
sglang version
Browse files- classify-dataset-sglang.py +490 -0
classify-dataset-sglang.py
ADDED
|
@@ -0,0 +1,490 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
# /// script
|
| 3 |
+
# requires-python = ">=3.10"
|
| 4 |
+
# dependencies = [
|
| 5 |
+
# "sglang[all]",
|
| 6 |
+
# "flashinfer-python",
|
| 7 |
+
# "transformers",
|
| 8 |
+
# "torch",
|
| 9 |
+
# "datasets",
|
| 10 |
+
# "huggingface-hub[hf_transfer]",
|
| 11 |
+
# ]
|
| 12 |
+
#
|
| 13 |
+
# [[tool.uv.index]]
|
| 14 |
+
# name = "flashinfer"
|
| 15 |
+
# url = "https://flashinfer.ai/whl/cu121/torch2.4/"
|
| 16 |
+
# ///
|
| 17 |
+
|
| 18 |
+
"""
|
| 19 |
+
Classify text columns in Hugging Face datasets using SGLang with reasoning-aware models.
|
| 20 |
+
|
| 21 |
+
This script provides efficient GPU-based classification with optional reasoning support,
|
| 22 |
+
optimized for models like SmolLM3-3B that use <think> tokens for chain-of-thought.
|
| 23 |
+
|
| 24 |
+
Example:
|
| 25 |
+
# Fast classification without reasoning
|
| 26 |
+
uv run classify-dataset-sglang.py \\
|
| 27 |
+
--input-dataset imdb \\
|
| 28 |
+
--column text \\
|
| 29 |
+
--labels "positive,negative" \\
|
| 30 |
+
--output-dataset user/imdb-classified
|
| 31 |
+
|
| 32 |
+
# Complex classification with reasoning
|
| 33 |
+
uv run classify-dataset-sglang.py \\
|
| 34 |
+
--input-dataset arxiv-papers \\
|
| 35 |
+
--column abstract \\
|
| 36 |
+
--labels "reasoning_systems,agents,multimodal,robotics,other" \\
|
| 37 |
+
--output-dataset user/arxiv-classified \\
|
| 38 |
+
--reasoning
|
| 39 |
+
|
| 40 |
+
HF Jobs example:
|
| 41 |
+
hf jobs uv run --flavor l4x1 \\
|
| 42 |
+
https://huggingface.co/datasets/uv-scripts/classification/raw/main/classify-dataset-sglang.py \\
|
| 43 |
+
--input-dataset user/emails \\
|
| 44 |
+
--column content \\
|
| 45 |
+
--labels "spam,ham" \\
|
| 46 |
+
--output-dataset user/emails-classified \\
|
| 47 |
+
--reasoning
|
| 48 |
+
"""
|
| 49 |
+
|
| 50 |
+
import argparse
|
| 51 |
+
import logging
|
| 52 |
+
import os
|
| 53 |
+
import sys
|
| 54 |
+
from typing import List, Dict, Any, Optional, Tuple
|
| 55 |
+
import json
|
| 56 |
+
import re
|
| 57 |
+
|
| 58 |
+
import torch
|
| 59 |
+
from datasets import load_dataset, Dataset
|
| 60 |
+
from huggingface_hub import HfApi, get_token
|
| 61 |
+
import sglang as sgl
|
| 62 |
+
|
| 63 |
+
# Default model - SmolLM3 with reasoning capabilities
|
| 64 |
+
DEFAULT_MODEL = "HuggingFaceTB/SmolLM3-3B"
|
| 65 |
+
|
| 66 |
+
# Minimum text length for valid classification
|
| 67 |
+
MIN_TEXT_LENGTH = 3
|
| 68 |
+
|
| 69 |
+
# Maximum text length (in characters) to avoid context overflow
|
| 70 |
+
MAX_TEXT_LENGTH = 4000
|
| 71 |
+
|
| 72 |
+
logging.basicConfig(
|
| 73 |
+
level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s"
|
| 74 |
+
)
|
| 75 |
+
logger = logging.getLogger(__name__)
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
def parse_args():
|
| 79 |
+
parser = argparse.ArgumentParser(
|
| 80 |
+
description="Classify text in HuggingFace datasets using SGLang with reasoning support",
|
| 81 |
+
formatter_class=argparse.RawDescriptionHelpFormatter,
|
| 82 |
+
epilog=__doc__,
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
# Required arguments
|
| 86 |
+
parser.add_argument(
|
| 87 |
+
"--input-dataset",
|
| 88 |
+
type=str,
|
| 89 |
+
required=True,
|
| 90 |
+
help="Input dataset ID on Hugging Face Hub",
|
| 91 |
+
)
|
| 92 |
+
parser.add_argument(
|
| 93 |
+
"--column", type=str, required=True, help="Name of the text column to classify"
|
| 94 |
+
)
|
| 95 |
+
parser.add_argument(
|
| 96 |
+
"--labels",
|
| 97 |
+
type=str,
|
| 98 |
+
required=True,
|
| 99 |
+
help="Comma-separated list of classification labels (e.g., 'positive,negative')",
|
| 100 |
+
)
|
| 101 |
+
parser.add_argument(
|
| 102 |
+
"--output-dataset",
|
| 103 |
+
type=str,
|
| 104 |
+
required=True,
|
| 105 |
+
help="Output dataset ID on Hugging Face Hub",
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
# Optional arguments
|
| 109 |
+
parser.add_argument(
|
| 110 |
+
"--model",
|
| 111 |
+
type=str,
|
| 112 |
+
default=DEFAULT_MODEL,
|
| 113 |
+
help=f"Model to use for classification (default: {DEFAULT_MODEL})",
|
| 114 |
+
)
|
| 115 |
+
parser.add_argument(
|
| 116 |
+
"--reasoning",
|
| 117 |
+
action="store_true",
|
| 118 |
+
help="Enable reasoning mode (allows model to think through complex cases)",
|
| 119 |
+
)
|
| 120 |
+
parser.add_argument(
|
| 121 |
+
"--save-reasoning",
|
| 122 |
+
action="store_true",
|
| 123 |
+
help="Save reasoning traces to a separate column (requires --reasoning)",
|
| 124 |
+
)
|
| 125 |
+
parser.add_argument(
|
| 126 |
+
"--max-samples",
|
| 127 |
+
type=int,
|
| 128 |
+
default=None,
|
| 129 |
+
help="Maximum number of samples to process (for testing)",
|
| 130 |
+
)
|
| 131 |
+
parser.add_argument(
|
| 132 |
+
"--hf-token",
|
| 133 |
+
type=str,
|
| 134 |
+
default=None,
|
| 135 |
+
help="Hugging Face API token (default: auto-detect from HF_TOKEN env var or huggingface-cli login)",
|
| 136 |
+
)
|
| 137 |
+
parser.add_argument(
|
| 138 |
+
"--split",
|
| 139 |
+
type=str,
|
| 140 |
+
default="train",
|
| 141 |
+
help="Dataset split to process (default: train)",
|
| 142 |
+
)
|
| 143 |
+
parser.add_argument(
|
| 144 |
+
"--temperature",
|
| 145 |
+
type=float,
|
| 146 |
+
default=0.1,
|
| 147 |
+
help="Temperature for generation (default: 0.1)",
|
| 148 |
+
)
|
| 149 |
+
parser.add_argument(
|
| 150 |
+
"--max-tokens",
|
| 151 |
+
type=int,
|
| 152 |
+
default=500,
|
| 153 |
+
help="Maximum tokens to generate (default: 500 for reasoning, 50 for non-reasoning)",
|
| 154 |
+
)
|
| 155 |
+
parser.add_argument(
|
| 156 |
+
"--batch-size",
|
| 157 |
+
type=int,
|
| 158 |
+
default=32,
|
| 159 |
+
help="Batch size for processing (default: 32)",
|
| 160 |
+
)
|
| 161 |
+
parser.add_argument(
|
| 162 |
+
"--grammar-backend",
|
| 163 |
+
type=str,
|
| 164 |
+
default="xgrammar",
|
| 165 |
+
choices=["outlines", "xgrammar", "llguidance"],
|
| 166 |
+
help="Grammar backend for structured outputs (default: xgrammar)",
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
return parser.parse_args()
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
def preprocess_text(text: str) -> str:
|
| 173 |
+
"""Preprocess text for classification."""
|
| 174 |
+
if not text or not isinstance(text, str):
|
| 175 |
+
return ""
|
| 176 |
+
|
| 177 |
+
# Strip whitespace
|
| 178 |
+
text = text.strip()
|
| 179 |
+
|
| 180 |
+
# Truncate if too long
|
| 181 |
+
if len(text) > MAX_TEXT_LENGTH:
|
| 182 |
+
text = f"{text[:MAX_TEXT_LENGTH]}..."
|
| 183 |
+
|
| 184 |
+
return text
|
| 185 |
+
|
| 186 |
+
|
| 187 |
+
def validate_text(text: str) -> bool:
|
| 188 |
+
"""Check if text is valid for classification."""
|
| 189 |
+
return bool(text and len(text) >= MIN_TEXT_LENGTH)
|
| 190 |
+
|
| 191 |
+
|
| 192 |
+
def create_classification_prompt(text: str, labels: List[str], reasoning: bool) -> str:
|
| 193 |
+
"""Create a prompt for classification with optional reasoning mode."""
|
| 194 |
+
if reasoning:
|
| 195 |
+
system_prompt = "You are a helpful assistant that thinks step-by-step before answering."
|
| 196 |
+
else:
|
| 197 |
+
system_prompt = "You are a helpful assistant. /no_think"
|
| 198 |
+
|
| 199 |
+
user_prompt = f"""Classify this text as one of: {', '.join(labels)}
|
| 200 |
+
|
| 201 |
+
Text: {text}
|
| 202 |
+
|
| 203 |
+
Classification:"""
|
| 204 |
+
|
| 205 |
+
# Format as a conversation
|
| 206 |
+
return f"<|system|>\n{system_prompt}\n<|user|>\n{user_prompt}\n<|assistant|>\n"
|
| 207 |
+
|
| 208 |
+
|
| 209 |
+
def create_ebnf_grammar(labels: List[str]) -> str:
|
| 210 |
+
"""Create an EBNF grammar that constrains output to one of the given labels."""
|
| 211 |
+
# Escape any special characters in labels
|
| 212 |
+
escaped_labels = [f'"{label}"' for label in labels]
|
| 213 |
+
choices = ' | '.join(escaped_labels)
|
| 214 |
+
return f"root ::= {choices}"
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
def parse_reasoning_output(output: str, label: str) -> Optional[str]:
|
| 218 |
+
"""Extract reasoning from output if present."""
|
| 219 |
+
# Look for thinking tags
|
| 220 |
+
if "<think>" in output and "</think>" in output:
|
| 221 |
+
start = output.find("<think>")
|
| 222 |
+
end = output.find("</think>") + len("</think>")
|
| 223 |
+
reasoning = output[start:end]
|
| 224 |
+
return reasoning
|
| 225 |
+
return None
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
def classify_batch_with_sglang(
|
| 229 |
+
engine: sgl.Engine,
|
| 230 |
+
texts: List[str],
|
| 231 |
+
labels: List[str],
|
| 232 |
+
args: argparse.Namespace
|
| 233 |
+
) -> List[Dict[str, Any]]:
|
| 234 |
+
"""Classify texts using SGLang with optional reasoning."""
|
| 235 |
+
|
| 236 |
+
# Prepare prompts
|
| 237 |
+
prompts = []
|
| 238 |
+
valid_indices = []
|
| 239 |
+
|
| 240 |
+
for i, text in enumerate(texts):
|
| 241 |
+
processed_text = preprocess_text(text)
|
| 242 |
+
if validate_text(processed_text):
|
| 243 |
+
prompt = create_classification_prompt(processed_text, labels, args.reasoning)
|
| 244 |
+
prompts.append(prompt)
|
| 245 |
+
valid_indices.append(i)
|
| 246 |
+
|
| 247 |
+
if not prompts:
|
| 248 |
+
return [{"label": None, "reasoning": None} for _ in texts]
|
| 249 |
+
|
| 250 |
+
# Set max tokens based on reasoning mode
|
| 251 |
+
max_tokens = args.max_tokens if args.reasoning else 50
|
| 252 |
+
|
| 253 |
+
# Create EBNF grammar for label constraints
|
| 254 |
+
ebnf_grammar = create_ebnf_grammar(labels)
|
| 255 |
+
|
| 256 |
+
# Set up sampling parameters with EBNF constraint
|
| 257 |
+
sampling_params = {
|
| 258 |
+
"temperature": args.temperature,
|
| 259 |
+
"max_new_tokens": max_tokens,
|
| 260 |
+
"ebnf": ebnf_grammar, # This ensures output is one of the valid labels
|
| 261 |
+
}
|
| 262 |
+
|
| 263 |
+
try:
|
| 264 |
+
# Generate with structured output constraint
|
| 265 |
+
outputs = engine.generate(prompts, sampling_params)
|
| 266 |
+
|
| 267 |
+
# Process outputs
|
| 268 |
+
results = [{"label": None, "reasoning": None} for _ in texts]
|
| 269 |
+
|
| 270 |
+
for idx, output in enumerate(outputs):
|
| 271 |
+
original_idx = valid_indices[idx]
|
| 272 |
+
|
| 273 |
+
# The output text should be just the label due to EBNF constraint
|
| 274 |
+
classification = output.text.strip().strip('"') # Remove quotes if present
|
| 275 |
+
|
| 276 |
+
# Extract reasoning if present and requested
|
| 277 |
+
reasoning = None
|
| 278 |
+
if args.reasoning and args.save_reasoning:
|
| 279 |
+
# Get the full output including reasoning
|
| 280 |
+
# Note: We need to check if SGLang provides access to full output with reasoning
|
| 281 |
+
reasoning = parse_reasoning_output(output.text, classification)
|
| 282 |
+
|
| 283 |
+
results[original_idx] = {
|
| 284 |
+
"label": classification,
|
| 285 |
+
"reasoning": reasoning
|
| 286 |
+
}
|
| 287 |
+
|
| 288 |
+
return results
|
| 289 |
+
|
| 290 |
+
except Exception as e:
|
| 291 |
+
logger.error(f"Error during batch classification: {e}")
|
| 292 |
+
# Return None labels for all texts in case of error
|
| 293 |
+
return [{"label": None, "reasoning": None} for _ in texts]
|
| 294 |
+
|
| 295 |
+
|
| 296 |
+
def main():
|
| 297 |
+
args = parse_args()
|
| 298 |
+
|
| 299 |
+
# Validate reasoning arguments
|
| 300 |
+
if args.save_reasoning and not args.reasoning:
|
| 301 |
+
logger.error("--save-reasoning requires --reasoning to be enabled")
|
| 302 |
+
sys.exit(1)
|
| 303 |
+
|
| 304 |
+
# Check authentication early
|
| 305 |
+
logger.info("Checking authentication...")
|
| 306 |
+
token = args.hf_token or (os.environ.get("HF_TOKEN") or get_token())
|
| 307 |
+
|
| 308 |
+
if not token:
|
| 309 |
+
logger.error("No authentication token found. Please either:")
|
| 310 |
+
logger.error("1. Run 'huggingface-cli login'")
|
| 311 |
+
logger.error("2. Set HF_TOKEN environment variable")
|
| 312 |
+
logger.error("3. Pass --hf-token argument")
|
| 313 |
+
sys.exit(1)
|
| 314 |
+
|
| 315 |
+
# Validate token by checking who we are
|
| 316 |
+
try:
|
| 317 |
+
api = HfApi(token=token)
|
| 318 |
+
user_info = api.whoami()
|
| 319 |
+
logger.info(f"Authenticated as: {user_info['name']}")
|
| 320 |
+
except Exception as e:
|
| 321 |
+
logger.error(f"Authentication failed: {e}")
|
| 322 |
+
logger.error("Please check your token is valid")
|
| 323 |
+
sys.exit(1)
|
| 324 |
+
|
| 325 |
+
# Check CUDA availability
|
| 326 |
+
if not torch.cuda.is_available():
|
| 327 |
+
logger.error("CUDA is not available. This script requires a GPU.")
|
| 328 |
+
logger.error("Please run on a machine with GPU support or use HF Jobs.")
|
| 329 |
+
sys.exit(1)
|
| 330 |
+
|
| 331 |
+
logger.info(f"CUDA available. Using device: {torch.cuda.get_device_name(0)}")
|
| 332 |
+
|
| 333 |
+
# Parse and validate labels
|
| 334 |
+
labels = [label.strip() for label in args.labels.split(",")]
|
| 335 |
+
if len(labels) < 2:
|
| 336 |
+
logger.error("At least two labels are required for classification.")
|
| 337 |
+
sys.exit(1)
|
| 338 |
+
logger.info(f"Classification labels: {labels}")
|
| 339 |
+
|
| 340 |
+
# Load dataset
|
| 341 |
+
logger.info(f"Loading dataset: {args.input_dataset}")
|
| 342 |
+
try:
|
| 343 |
+
dataset = load_dataset(args.input_dataset, split=args.split)
|
| 344 |
+
|
| 345 |
+
# Limit samples if specified
|
| 346 |
+
if args.max_samples:
|
| 347 |
+
dataset = dataset.select(range(min(args.max_samples, len(dataset))))
|
| 348 |
+
logger.info(f"Limited dataset to {len(dataset)} samples")
|
| 349 |
+
|
| 350 |
+
logger.info(f"Loaded {len(dataset)} samples from split '{args.split}'")
|
| 351 |
+
except Exception as e:
|
| 352 |
+
logger.error(f"Failed to load dataset: {e}")
|
| 353 |
+
sys.exit(1)
|
| 354 |
+
|
| 355 |
+
# Verify column exists
|
| 356 |
+
if args.column not in dataset.column_names:
|
| 357 |
+
logger.error(f"Column '{args.column}' not found in dataset.")
|
| 358 |
+
logger.error(f"Available columns: {dataset.column_names}")
|
| 359 |
+
sys.exit(1)
|
| 360 |
+
|
| 361 |
+
# Extract texts
|
| 362 |
+
texts = dataset[args.column]
|
| 363 |
+
|
| 364 |
+
# Initialize SGLang Engine
|
| 365 |
+
logger.info(f"Initializing SGLang Engine with model: {args.model}")
|
| 366 |
+
logger.info(f"Reasoning mode: {'enabled' if args.reasoning else 'disabled (fast mode)'}")
|
| 367 |
+
logger.info(f"Grammar backend: {args.grammar_backend}")
|
| 368 |
+
|
| 369 |
+
try:
|
| 370 |
+
# Determine reasoning parser based on model
|
| 371 |
+
reasoning_parser = None
|
| 372 |
+
if "smollm3" in args.model.lower() or "qwen" in args.model.lower():
|
| 373 |
+
reasoning_parser = "qwen" # Uses <think> tokens
|
| 374 |
+
elif "deepseek-r1" in args.model.lower():
|
| 375 |
+
reasoning_parser = "deepseek-r1"
|
| 376 |
+
|
| 377 |
+
engine_kwargs = {
|
| 378 |
+
"model_path": args.model,
|
| 379 |
+
"trust_remote_code": True,
|
| 380 |
+
"dtype": "auto",
|
| 381 |
+
"grammar_backend": args.grammar_backend,
|
| 382 |
+
}
|
| 383 |
+
|
| 384 |
+
if reasoning_parser and args.reasoning:
|
| 385 |
+
engine_kwargs["reasoning_parser"] = reasoning_parser
|
| 386 |
+
logger.info(f"Using reasoning parser: {reasoning_parser}")
|
| 387 |
+
|
| 388 |
+
engine = sgl.Engine(**engine_kwargs)
|
| 389 |
+
logger.info("SGLang engine initialized successfully")
|
| 390 |
+
except Exception as e:
|
| 391 |
+
logger.error(f"Failed to initialize SGLang: {e}")
|
| 392 |
+
sys.exit(1)
|
| 393 |
+
|
| 394 |
+
# Process in batches
|
| 395 |
+
logger.info(f"Starting classification with batch size {args.batch_size}...")
|
| 396 |
+
all_results = []
|
| 397 |
+
|
| 398 |
+
for i in range(0, len(texts), args.batch_size):
|
| 399 |
+
batch_end = min(i + args.batch_size, len(texts))
|
| 400 |
+
batch_texts = texts[i:batch_end]
|
| 401 |
+
|
| 402 |
+
logger.info(f"Processing batch {i//args.batch_size + 1}/{(len(texts) + args.batch_size - 1)//args.batch_size}")
|
| 403 |
+
|
| 404 |
+
batch_results = classify_batch_with_sglang(
|
| 405 |
+
engine, batch_texts, labels, args
|
| 406 |
+
)
|
| 407 |
+
all_results.extend(batch_results)
|
| 408 |
+
|
| 409 |
+
# Extract labels and reasoning
|
| 410 |
+
all_labels = [r["label"] for r in all_results]
|
| 411 |
+
all_reasoning = [r["reasoning"] for r in all_results] if args.save_reasoning else None
|
| 412 |
+
|
| 413 |
+
# Add classifications to dataset
|
| 414 |
+
dataset = dataset.add_column("classification", all_labels)
|
| 415 |
+
|
| 416 |
+
# Add reasoning column if requested
|
| 417 |
+
if args.save_reasoning and args.reasoning:
|
| 418 |
+
dataset = dataset.add_column("reasoning", all_reasoning)
|
| 419 |
+
logger.info("Added reasoning traces to dataset")
|
| 420 |
+
|
| 421 |
+
# Calculate statistics
|
| 422 |
+
valid_count = sum(1 for label in all_labels if label is not None)
|
| 423 |
+
invalid_count = len(all_labels) - valid_count
|
| 424 |
+
|
| 425 |
+
if invalid_count > 0:
|
| 426 |
+
logger.warning(
|
| 427 |
+
f"{invalid_count} texts were too short or invalid for classification"
|
| 428 |
+
)
|
| 429 |
+
|
| 430 |
+
# Show classification distribution
|
| 431 |
+
label_counts = {label: all_labels.count(label) for label in labels}
|
| 432 |
+
logger.info("Classification distribution:")
|
| 433 |
+
for label, count in label_counts.items():
|
| 434 |
+
percentage = count / len(all_labels) * 100 if all_labels else 0
|
| 435 |
+
logger.info(f" {label}: {count} ({percentage:.1f}%)")
|
| 436 |
+
if invalid_count > 0:
|
| 437 |
+
none_percentage = invalid_count / len(all_labels) * 100
|
| 438 |
+
logger.info(f" Invalid/Skipped: {invalid_count} ({none_percentage:.1f}%)")
|
| 439 |
+
|
| 440 |
+
# Log success rate
|
| 441 |
+
success_rate = (valid_count / len(all_labels) * 100) if all_labels else 0
|
| 442 |
+
logger.info(f"Classification success rate: {success_rate:.1f}%")
|
| 443 |
+
|
| 444 |
+
# Save to Hub
|
| 445 |
+
logger.info(f"Pushing dataset to Hub: {args.output_dataset}")
|
| 446 |
+
try:
|
| 447 |
+
commit_msg = f"Add classifications using {args.model} with SGLang"
|
| 448 |
+
if args.reasoning:
|
| 449 |
+
commit_msg += " (reasoning mode)"
|
| 450 |
+
|
| 451 |
+
dataset.push_to_hub(
|
| 452 |
+
args.output_dataset,
|
| 453 |
+
token=token,
|
| 454 |
+
commit_message=commit_msg,
|
| 455 |
+
)
|
| 456 |
+
logger.info(
|
| 457 |
+
f"Successfully pushed to: https://huggingface.co/datasets/{args.output_dataset}"
|
| 458 |
+
)
|
| 459 |
+
except Exception as e:
|
| 460 |
+
logger.error(f"Failed to push to Hub: {e}")
|
| 461 |
+
sys.exit(1)
|
| 462 |
+
|
| 463 |
+
# Clean up
|
| 464 |
+
engine.shutdown()
|
| 465 |
+
logger.info("SGLang engine shutdown complete")
|
| 466 |
+
|
| 467 |
+
|
| 468 |
+
if __name__ == "__main__":
|
| 469 |
+
if len(sys.argv) == 1:
|
| 470 |
+
print("Example HF Jobs commands:")
|
| 471 |
+
print("\n# Fast classification (no reasoning):")
|
| 472 |
+
print("hf jobs uv run \\")
|
| 473 |
+
print(" --flavor l4x1 \\")
|
| 474 |
+
print(" https://huggingface.co/datasets/uv-scripts/classification/raw/main/classify-dataset-sglang.py \\")
|
| 475 |
+
print(" --input-dataset stanfordnlp/imdb \\")
|
| 476 |
+
print(" --column text \\")
|
| 477 |
+
print(" --labels 'positive,negative' \\")
|
| 478 |
+
print(" --output-dataset user/imdb-classified")
|
| 479 |
+
print("\n# Complex classification with reasoning:")
|
| 480 |
+
print("hf jobs uv run \\")
|
| 481 |
+
print(" --flavor l4x1 \\")
|
| 482 |
+
print(" https://huggingface.co/datasets/uv-scripts/classification/raw/main/classify-dataset-sglang.py \\")
|
| 483 |
+
print(" --input-dataset arxiv-papers \\")
|
| 484 |
+
print(" --column abstract \\")
|
| 485 |
+
print(" --labels 'reasoning_systems,agents,multimodal,robotics,other' \\")
|
| 486 |
+
print(" --output-dataset user/arxiv-classified \\")
|
| 487 |
+
print(" --reasoning --save-reasoning")
|
| 488 |
+
sys.exit(0)
|
| 489 |
+
|
| 490 |
+
main()
|