Datasets:
Size:
10K<n<100K
License:
Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
pretty_name: "Multi-EuP v2: European Parliament Debates with MEP Metadata (24 languages)"
|
| 3 |
+
dataset_name: multi-eup-v2
|
| 4 |
+
configs:
|
| 5 |
+
- config_name: default
|
| 6 |
+
data_files: "clean_all_with_did_qid.MEP.csv"
|
| 7 |
+
license: cc-by-4.0
|
| 8 |
+
multilinguality: multilingual
|
| 9 |
+
task_categories:
|
| 10 |
+
- text-classification
|
| 11 |
+
- text-retrieval
|
| 12 |
+
- text-generation
|
| 13 |
+
language:
|
| 14 |
+
- bg
|
| 15 |
+
- cs
|
| 16 |
+
- da
|
| 17 |
+
- de
|
| 18 |
+
- el
|
| 19 |
+
- en
|
| 20 |
+
- es
|
| 21 |
+
- et
|
| 22 |
+
- fi
|
| 23 |
+
- fr
|
| 24 |
+
- ga
|
| 25 |
+
- hr
|
| 26 |
+
- hu
|
| 27 |
+
- it
|
| 28 |
+
- lt
|
| 29 |
+
- lv
|
| 30 |
+
- mt
|
| 31 |
+
- nl
|
| 32 |
+
- pl
|
| 33 |
+
- pt
|
| 34 |
+
- ro
|
| 35 |
+
- sk
|
| 36 |
+
- sl
|
| 37 |
+
- sv
|
| 38 |
+
size_categories:
|
| 39 |
+
- 10K<n<100K
|
| 40 |
+
homepage: ""
|
| 41 |
+
repository: ""
|
| 42 |
+
paper: "https://aclanthology.org/2024.mrl-1.23/"
|
| 43 |
+
tags:
|
| 44 |
+
- multilingual
|
| 45 |
+
- european-parliament
|
| 46 |
+
- political-discourse
|
| 47 |
+
- metadata
|
| 48 |
+
- mep
|
| 49 |
+
---
|
| 50 |
+
# Multi-EuP-v2
|
| 51 |
+
|
| 52 |
+
This dataset card documents **Multi-EuP-v2**, a multilingual corpus of European Parliament debate speeches enriched with Member of European Parliament (MEP) metadata and multilingual debate titles/IDs. It supports research on political text analysis, speaker-attribute prediction, stance/vote prediction, multilingual NLP, and retrieval.
|
| 53 |
+
|
| 54 |
+
## Dataset Details
|
| 55 |
+
|
| 56 |
+
### Dataset Description
|
| 57 |
+
|
| 58 |
+
**Multi-EuP-v2** aggregates **50,337** debate speeches (each a unique `did`) in **24 languages**. Each row contains the speech text (`TEXT`), speaker identity (`NAME`, `MEPID`), language (`LANGUAGE`), political group (`PARTY`), country and gender of the MEP, date, video timestamps, plus **multilingual debate titles `title_<LANG>`** and **per-language debate/vote linkage IDs `qid_<LANG>`**.
|
| 59 |
+
|
| 60 |
+
- **Curated by:** Jinrui Yang, Fan Jiang, Timothy Baldwin
|
| 61 |
+
- **Funded by:** Melbourne Research Scholarship; LIEF HPC-GPGPU Facility (LE170100200)
|
| 62 |
+
- **Shared by:** University of Melbourne
|
| 63 |
+
- **Language(s) (NLP):** `bg, cs, da, de, el, en, es, et, fi, fr, ga, hr, hu, it, lt, lv, mt, nl, pl, pt, ro, sk, sl, sv` (24 total)
|
| 64 |
+
- **License:** cc-by-4.0
|
| 65 |
+
|
| 66 |
+
### Dataset Sources
|
| 67 |
+
|
| 68 |
+
- **Repository:** [https://github.com/jrnlp/MLIR_language_bias]
|
| 69 |
+
- **Paper:** https://aclanthology.org/2024.mrl-1.23/
|
| 70 |
+
|
| 71 |
+
## Uses
|
| 72 |
+
|
| 73 |
+
### Direct Use
|
| 74 |
+
- **Text classification:** predict `gender`, `PARTY`, or `country` from `TEXT`.
|
| 75 |
+
- **Stance/vote prediction:** link `qid_<LANG>` to external roll-call vote labels.
|
| 76 |
+
- **Multilingual representation learning:** train/evaluate models across 24 EU languages.
|
| 77 |
+
- **Information retrieval:** index `TEXT` and use `title_*`/`qid_*` as multilingual query anchors.
|
| 78 |
+
|
| 79 |
+
### Out-of-Scope Use
|
| 80 |
+
- Inferring private attributes beyond public MEP metadata.
|
| 81 |
+
- Automated profiling for sensitive decisions.
|
| 82 |
+
- Misrepresenting model outputs as factual statements.
|
| 83 |
+
|
| 84 |
+
## Dataset Structure
|
| 85 |
+
|
| 86 |
+
Each row corresponds to a single speech/document.
|
| 87 |
+
|
| 88 |
+
**Core fields:**
|
| 89 |
+
- `did` *(string)* β unique speech ID
|
| 90 |
+
- `TEXT` *(string)* β speech text
|
| 91 |
+
- `DATE` *(string/date)* β debate date
|
| 92 |
+
- `LANGUAGE` *(string)* β language code
|
| 93 |
+
- `NAME` *(string)* β MEP name
|
| 94 |
+
- `MEPID` *(string)* β MEP ID
|
| 95 |
+
- `PARTY` *(string)* β political group
|
| 96 |
+
- `country` *(string)* β MEP's country
|
| 97 |
+
- `gender` *(string)* β `Female`, `Male`, or `Unknown`
|
| 98 |
+
- Additional provenance fields: `PRESIDENT`, `TEXTID`, `CODICT`, `VOD-START`, `VOD-END`
|
| 99 |
+
|
| 100 |
+
**Multilingual metadata:**
|
| 101 |
+
- `title_<LANG>` *(string)* β debate title in that language
|
| 102 |
+
- `qid_<LANG>` *(string)* β debate/vote linkage ID in that language
|
| 103 |
+
|
| 104 |
+
**Splits:** Single CSV, no predefined splits.
|
| 105 |
+
|
| 106 |
+
**Basic stats:**
|
| 107 |
+
- Rows: 50,337
|
| 108 |
+
- Languages: 24
|
| 109 |
+
- Top political groups: PPE 8,869; S-D 8,468; Renew 5,313; ECR 4,130; Verts/ALE 4,001; ID 3,286; The Left 2,951; NI 2,539; GUE/NGL 468
|
| 110 |
+
- Gender counts: Female 25,536; Male 23,461; Unknown 349
|
| 111 |
+
- Top countries: Germany 7,226; France 6,158; Poland 3,706; Spain 3,312; Italy 3,222; Netherlands 1,924; Greece 1,756; Romania 1,701; Czechia 1,661; Portugal 1,150; Belgium 1,134; Hungary 1,106
|
| 112 |
+
|
| 113 |
+
## Dataset Creation
|
| 114 |
+
|
| 115 |
+
### Curation Rationale
|
| 116 |
+
Support multilingual political text research, enabling standardized tasks in gender/group prediction, stance/vote prediction, and IR.
|
| 117 |
+
|
| 118 |
+
### Source Data
|
| 119 |
+
|
| 120 |
+
#### Data Collection and Processing
|
| 121 |
+
- **Source:** Official EP debates.
|
| 122 |
+
- **Processing:** metadata linking, language verification, deduplication, multilingual title extraction.
|
| 123 |
+
- **Quality checks:** consistency in language tags and IDs.
|
| 124 |
+
|
| 125 |
+
#### Who are the source data producers?
|
| 126 |
+
MEPs speaking in plenary debates; titles from official EP records.
|
| 127 |
+
|
| 128 |
+
### Annotations
|
| 129 |
+
|
| 130 |
+
#### Annotation process
|
| 131 |
+
Metadata compiled from public records; no manual stance labels.
|
| 132 |
+
|
| 133 |
+
#### Personal and Sensitive Information
|
| 134 |
+
Contains names and political opinions of public officials.
|
| 135 |
+
|
| 136 |
+
## Bias, Risks, and Limitations
|
| 137 |
+
- Domain bias: formal political discourse.
|
| 138 |
+
- Risk in demographic inference tasks.
|
| 139 |
+
- Language/script differences affect comparability.
|
| 140 |
+
|
| 141 |
+
### Recommendations
|
| 142 |
+
- Report per-language metrics.
|
| 143 |
+
- Avoid over-claiming causal interpretations.
|
| 144 |
+
|
| 145 |
+
## Citation
|
| 146 |
+
|
| 147 |
+
**BibTeX:**
|
| 148 |
+
```bibtex
|
| 149 |
+
@inproceedings{yang-etal-2024-language-bias,
|
| 150 |
+
title = {Language Bias in Multilingual Information Retrieval: The Nature of the Beast and Mitigation Methods},
|
| 151 |
+
author = {Yang, Jinrui and Jiang, Fan and Baldwin, Timothy},
|
| 152 |
+
booktitle = {Proceedings of the Fourth Workshop on Multilingual Representation Learning (MRL 2024)},
|
| 153 |
+
year = {2024},
|
| 154 |
+
pages = {280--292},
|
| 155 |
+
publisher = {Association for Computational Linguistics},
|
| 156 |
+
url = {https://aclanthology.org/2024.mrl-1.23/},
|
| 157 |
+
doi = {10.18653/v1/2024.mrl-1.23}
|
| 158 |
+
}
|
| 159 |
+
```
|
| 160 |
+
|
| 161 |
+
**APA:** Yang, J., Jiang, F., & Baldwin, T. (2024). *Language Bias in Multilingual Information Retrieval: The Nature of the Beast and Mitigation Methods*. In MRL 2024. ACL.
|
| 162 |
+
|
| 163 |
+
## Contact
|
| 164 |