# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import datasets import pandas as pd _CITATION = "https://arxiv.org/abs/2310.09550" _DESCRIPTION = """\ The Ancient Chinese Language Understanding Evaluation (ACLUE) is an evaluation benchmark focused on ancient Chinese language comprehension. It aims to assess the performance of large-scale language models on understanding ancient Chinese. """ _HOMEPAGE = "https://github.com/isen-zhang/ACLUE" _URL = r"https://huggingface.co/datasets/tyouisen/aclue/resolve/main/aclue_v1_0_0.zip" task_list = ['polysemy_resolution', 'poetry_sentiment_analysis', 'named_entity_recognition', 'basic_ancient_chinese', 'poetry_context_prediction', 'sentence_segmentation', 'couplet_prediction', 'poetry_appreciate', 'ancient_chinese_culture', 'ancient_phonetics', 'homographic_character_resolution', 'ancient_literature', 'ancient_medical', 'poetry_quality_assessment', 'reading_comprehension'] class ACLUEConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super().__init__(version=datasets.Version("1.0.0"), **kwargs) # V1.0.0 Init version class ACLUE(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ ACLUEConfig(name=task_name) for task_name in task_list ] def _info(self): features = datasets.Features( { "Question": datasets.Value("string"), "A": datasets.Value("string"), "B": datasets.Value("string"), "C": datasets.Value("string"), "D": datasets.Value("string"), "Answer": datasets.Value("string"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): data_dir = dl_manager.download_and_extract(_URL) task_name = self.config.name return [ datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "filepath": os.path.join(data_dir, f"test/{task_name}.csv"), }, ), datasets.SplitGenerator( name=datasets.Split.("dev"), gen_kwargs={ "filepath": os.path.join(data_dir, f"dev/{task_name}.csv"), }, ), ] def _generate_examples(self, filepath): df = pd.read_csv(filepath, header=0, encoding="utf-8") for i, instance in enumerate(df.to_dict(orient="records")): yield i, instance