|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import datasets |
|
import pandas as pd |
|
|
|
_CITATION = "https://arxiv.org/abs/2310.09550" |
|
|
|
_DESCRIPTION = """\ |
|
The Ancient Chinese Language Understanding Evaluation (ACLUE) is an evaluation benchmark focused on ancient Chinese language comprehension. It aims to assess the performance of large-scale language models on understanding ancient Chinese. |
|
""" |
|
_HOMEPAGE = "https://github.com/isen-zhang/ACLUE" |
|
|
|
_URL = r"https://huggingface.co/datasets/tyouisen/aclue/resolve/main/aclue_v1_0_0.zip" |
|
|
|
task_list = ['polysemy_resolution', |
|
'poetry_sentiment_analysis', |
|
'named_entity_recognition', |
|
'basic_ancient_chinese', |
|
'poetry_context_prediction', |
|
'sentence_segmentation', |
|
'couplet_prediction', |
|
'poetry_appreciate', |
|
'ancient_chinese_culture', |
|
'ancient_phonetics', |
|
'homographic_character_resolution', |
|
'ancient_literature', |
|
'ancient_medical', |
|
'poetry_quality_assessment', |
|
'reading_comprehension'] |
|
class ACLUEConfig(datasets.BuilderConfig): |
|
def __init__(self, **kwargs): |
|
super().__init__(version=datasets.Version("1.0.0"), **kwargs) |
|
self.split = split or "test" |
|
|
|
|
|
|
|
|
|
class ACLUE(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [ |
|
ACLUEConfig(name=task_name) for task_name in task_list |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"Question": datasets.Value("string"), |
|
"A": datasets.Value("string"), |
|
"B": datasets.Value("string"), |
|
"C": datasets.Value("string"), |
|
"D": datasets.Value("string"), |
|
"Answer": datasets.Value("string"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_dir = dl_manager.download_and_extract(_URL) |
|
task_name = self.config.name |
|
split = self.config.split |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, f"{split}/{task_name}.csv"), |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
df = pd.read_csv(filepath, header=0, encoding="utf-8") |
|
for i, instance in enumerate(df.to_dict(orient="records")): |
|
yield i, instance |