|
import pandas as pd |
|
from datasets import load_dataset |
|
from transformers import AutoTokenizer |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained("roberta-base") |
|
stats = [] |
|
for i in ["emoji_temporal", "hate_temporal", "nerd_temporal", "ner_temporal", "topic_temporal", "sentiment_small_temporal"]: |
|
for s in ["train", "validation", "test"]: |
|
dataset = load_dataset("tweettemposhift/tweet_temporal_shift", i, split=s) |
|
df = dataset.to_pandas() |
|
if i != "nerd_temporal": |
|
token_length = [len(tokenizer.tokenize(t)) for t in dataset['text']] |
|
else: |
|
token_length = [len(tokenizer.tokenize(f"{d['target']} {tokenizer.sep_token} {d['definition']} {tokenizer.sep_token} {d['text']}")) for d in dataset] |
|
token_length_in = [i for i in token_length if i <= 126] |
|
date = pd.to_datetime(df.date).sort_values().values |
|
stats.append({ |
|
"data": i, |
|
"split": s, |
|
"size": len(dataset), |
|
"size (token length < 128)": len(token_length_in), |
|
"mean_token_length": sum(token_length)/len(token_length), |
|
"date": f'{str(date[0]).split("T")[0]} / {str(date[-1]).split("T")[0]}', |
|
}) |
|
df = pd.DataFrame(stats) |
|
print(df) |
|
pretty_name = { |
|
"emoji_temporal": "Emoji", |
|
"hate_temporal": "Hate", |
|
"nerd_temporal": "NERD", |
|
"ner_temporal": "NER", |
|
"topic_temporal": "Topic", |
|
"sentiment_small_temporal": "Sentiment" |
|
} |
|
df.index = [pretty_name[i] for i in df.pop("data")] |
|
df = df[["split", "size", "date"]] |
|
pretty_name_split = {"train": "Train", "validation": "Valid", "test": "Test"} |
|
df["split"] = [pretty_name_split[i] for i in df["split"]] |
|
df.columns = [i.capitalize() for i in df.columns] |
|
df['Size'] = df['Size'].map('{:,}'.format) |
|
print(df.to_latex()) |
|
|