--- language: - de - en - es - fr - it - nl - pl - pt - ru multilinguality: - multilingual size_categories: - <10K task_categories: - token-classification task_ids: - named-entity-recognition pretty_name: MultiNERD --- # Dataset Card for "tner/multinerd" ## Dataset Description - **Repository:** [T-NER](https://github.com/asahi417/tner) - **Paper:** [https://aclanthology.org/2022.findings-naacl.60/](https://aclanthology.org/2022.findings-naacl.60/) - **Dataset:** MultiNERD - **Domain:** Wikipedia, WikiNews - **Number of Entity:** 18 ### Dataset Summary MultiNERD NER benchmark dataset formatted in a part of [TNER](https://github.com/asahi417/tner) project. - Entity Types: `PER`, `LOC`, `ORG`, `ANIM`, `BIO`, `CEL`, `DIS`, `EVE`, `FOOD`, `INST`, `MEDIA`, `PLANT`, `MYTH`, `TIME`, `VEHI`, `MISC`, `SUPER`, `PHY` ## Dataset Structure ### Data Instances An example of `train` of `de` looks as follows. ``` { 'tokens': [ "Die", "Blätter", "des", "Huflattichs", "sind", "leicht", "mit", "den", "sehr", "ähnlichen", "Blättern", "der", "Weißen", "Pestwurz", "(", "\"", "Petasites", "albus", "\"", ")", "zu", "verwechseln", "." ], 'tags': [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0 ] } ``` ### Label ID The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/multinerd/raw/main/dataset/label.json). ```python { "O": 0, "B-PER": 1, "I-PER": 2, "B-LOC": 3, "I-LOC": 4, "B-ORG": 5, "I-ORG": 6, "B-ANIM": 7, "I-ANIM": 8, "B-BIO": 9, "I-BIO": 10, "B-CEL": 11, "I-CEL": 12, "B-DIS": 13, "I-DIS": 14, "B-EVE": 15, "I-EVE": 16, "B-FOOD": 17, "I-FOOD": 18, "B-INST": 19, "I-INST": 20, "B-MEDIA": 21, "I-MEDIA": 22, "B-PLANT": 23, "I-PLANT": 24, "B-MYTH": 25, "I-MYTH": 26, "B-TIME": 27, "I-TIME": 28, "B-VEHI": 29, "I-VEHI": 30, "B-SUPER": 31, "I-SUPER": 32, "B-PHY": 33, "I-PHY": 34 } ``` ### Data Splits | language | train | validation | test | |:-----------|--------:|-------------:|-------:| | de | 98640 | 12330 | 12372 | | en | 92720 | 11590 | 11597 | | es | 76320 | 9540 | 9618 | | fr | 100800 | 12600 | 12678 | | it | 88400 | 11050 | 11069 | | nl | 83680 | 10460 | 10547 | | pl | 108160 | 13520 | 13585 | | pt | 80560 | 10070 | 10160 | | ru | 92320 | 11540 | 11580 | ### Citation Information ``` @inproceedings{tedeschi-navigli-2022-multinerd, title = "{M}ulti{NERD}: A Multilingual, Multi-Genre and Fine-Grained Dataset for Named Entity Recognition (and Disambiguation)", author = "Tedeschi, Simone and Navigli, Roberto", booktitle = "Findings of the Association for Computational Linguistics: NAACL 2022", month = jul, year = "2022", address = "Seattle, United States", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/2022.findings-naacl.60", doi = "10.18653/v1/2022.findings-naacl.60", pages = "801--812", abstract = "Named Entity Recognition (NER) is the task of identifying named entities in texts and classifying them through specific semantic categories, a process which is crucial for a wide range of NLP applications. Current datasets for NER focus mainly on coarse-grained entity types, tend to consider a single textual genre and to cover a narrow set of languages, thus limiting the general applicability of NER systems.In this work, we design a new methodology for automatically producing NER annotations, and address the aforementioned limitations by introducing a novel dataset that covers 10 languages, 15 NER categories and 2 textual genres.We also introduce a manually-annotated test set, and extensively evaluate the quality of our novel dataset on both this new test set and standard benchmarks for NER.In addition, in our dataset, we include: i) disambiguation information to enable the development of multilingual entity linking systems, and ii) image URLs to encourage the creation of multimodal systems.We release our dataset at https://github.com/Babelscape/multinerd.", } ```