asahi417 commited on
Commit
2666d29
·
1 Parent(s): 5644f9a
.gitattributes CHANGED
@@ -49,3 +49,12 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
49
  *.jpg filter=lfs diff=lfs merge=lfs -text
50
  *.jpeg filter=lfs diff=lfs merge=lfs -text
51
  *.webp filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
49
  *.jpg filter=lfs diff=lfs merge=lfs -text
50
  *.jpeg filter=lfs diff=lfs merge=lfs -text
51
  *.webp filter=lfs diff=lfs merge=lfs -text
52
+ dataset/it.jsonl filter=lfs diff=lfs merge=lfs -text
53
+ dataset/pt.jsonl filter=lfs diff=lfs merge=lfs -text
54
+ dataset/es.jsonl filter=lfs diff=lfs merge=lfs -text
55
+ dataset/fr.jsonl filter=lfs diff=lfs merge=lfs -text
56
+ dataset/nl.jsonl filter=lfs diff=lfs merge=lfs -text
57
+ dataset/pl.jsonl filter=lfs diff=lfs merge=lfs -text
58
+ dataset/ru.jsonl filter=lfs diff=lfs merge=lfs -text
59
+ dataset/de.jsonl filter=lfs diff=lfs merge=lfs -text
60
+ dataset/en.jsonl filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - de
4
+ - en
5
+ - es
6
+ - fr
7
+ - it
8
+ - nl
9
+ - pl
10
+ - pt
11
+ - ru
12
+ multilinguality:
13
+ - multilingual
14
+ size_categories:
15
+ - 10K<100k
16
+ task_categories:
17
+ - token-classification
18
+ task_ids:
19
+ - named-entity-recognition
20
+ pretty_name: WikiNeural
21
+ ---
22
+
23
+ # Dataset Card for "tner/wikineural"
24
+
25
+ ## Dataset Description
26
+
27
+ - **Repository:** [T-NER](https://github.com/asahi417/tner)
28
+ - **Paper:** [https://aclanthology.org/2021.findings-emnlp.215/](https://aclanthology.org/2021.findings-emnlp.215/)
29
+ - **Dataset:** WikiNeural
30
+ - **Domain:** Wikipedia
31
+ - **Number of Entity:** 16
32
+
33
+
34
+ ### Dataset Summary
35
+ WikiAnn NER dataset formatted in a part of [TNER](https://github.com/asahi417/tner) project.
36
+ - Entity Types: `PER`, `LOC`, `ORG`, `ANIM`, `BIO`, `CEL`, `DIS`, `EVE`, `FOOD`, `INST`, `MEDIA`, `PLANT`, `MYTH`, `TIME`, `VEHI`, `MISC`
37
+
38
+ ## Dataset Structure
39
+
40
+ ### Data Instances
41
+ An example of `train` looks as follows.
42
+
43
+ ```
44
+ {
45
+ 'tokens': ['I', 'hate', 'the', 'words', 'chunder', ',', 'vomit', 'and', 'puke', '.', 'BUUH', '.'],
46
+ 'tags': [6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6]
47
+ }
48
+ ```
49
+
50
+ ### Label ID
51
+ The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/wikineural/raw/main/dataset/label.json).
52
+ ```python
53
+ {
54
+ "O": 0,
55
+ "B-PER": 1,
56
+ "I-PER": 2,
57
+ "B-LOC": 3,
58
+ "I-LOC": 4,
59
+ "B-ORG": 5,
60
+ "I-ORG": 6,
61
+ "B-ANIM": 7,
62
+ "I-ANIM": 8,
63
+ "B-BIO": 9,
64
+ "I-BIO": 10,
65
+ "B-CEL": 11,
66
+ "I-CEL": 12,
67
+ "B-DIS": 13,
68
+ "I-DIS": 14,
69
+ "B-EVE": 15,
70
+ "I-EVE": 16,
71
+ "B-FOOD": 17,
72
+ "I-FOOD": 18,
73
+ "B-INST": 19,
74
+ "I-INST": 20,
75
+ "B-MEDIA": 21,
76
+ "I-MEDIA": 22,
77
+ "B-PLANT": 23,
78
+ "I-PLANT": 24,
79
+ "B-MYTH": 25,
80
+ "I-MYTH": 26,
81
+ "B-TIME": 27,
82
+ "I-TIME": 28,
83
+ "B-VEHI": 29,
84
+ "I-VEHI": 30,
85
+ "B-MISC": 31,
86
+ "I-MISC": 32
87
+ }
88
+ ```
89
+
90
+ ### Data Splits
91
+
92
+ | language | train | validation | test |
93
+ |:-----------|--------:|-------------:|-------:|
94
+ | de | 98640 | 12330 | 12372 |
95
+ | en | 92720 | 11590 | 11597 |
96
+ | es | 76320 | 9540 | 9618 |
97
+ | fr | 100800 | 12600 | 12678 |
98
+ | it | 88400 | 11050 | 11069 |
99
+ | nl | 83680 | 10460 | 10547 |
100
+ | pl | 108160 | 13520 | 13585 |
101
+ | pt | 80560 | 10070 | 10160 |
102
+ | ru | 92320 | 11540 | 11580 |
103
+
104
+ ### Citation Information
105
+
106
+ ```
107
+ @inproceedings{tedeschi-etal-2021-wikineural-combined,
108
+ title = "{W}iki{NE}u{R}al: {C}ombined Neural and Knowledge-based Silver Data Creation for Multilingual {NER}",
109
+ author = "Tedeschi, Simone and
110
+ Maiorca, Valentino and
111
+ Campolungo, Niccol{\`o} and
112
+ Cecconi, Francesco and
113
+ Navigli, Roberto",
114
+ booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
115
+ month = nov,
116
+ year = "2021",
117
+ address = "Punta Cana, Dominican Republic",
118
+ publisher = "Association for Computational Linguistics",
119
+ url = "https://aclanthology.org/2021.findings-emnlp.215",
120
+ doi = "10.18653/v1/2021.findings-emnlp.215",
121
+ pages = "2521--2533",
122
+ abstract = "Multilingual Named Entity Recognition (NER) is a key intermediate task which is needed in many areas of NLP. In this paper, we address the well-known issue of data scarcity in NER, especially relevant when moving to a multilingual scenario, and go beyond current approaches to the creation of multilingual silver data for the task. We exploit the texts of Wikipedia and introduce a new methodology based on the effective combination of knowledge-based approaches and neural models, together with a novel domain adaptation technique, to produce high-quality training corpora for NER. We evaluate our datasets extensively on standard benchmarks for NER, yielding substantial improvements up to 6 span-based F1-score points over previous state-of-the-art systems for data creation.",
123
+ }
124
+ ```
dataset/de.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6131a64f666884691990333ecfc983940fbaf25eb584940c4c9640318bcef873
3
+ size 38217905
dataset/en.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5040b1e7a1dea31eeb315a46b7f7cfc4cb3ddceae489f495901392e2f1b0aad1
3
+ size 44663615
dataset/es.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f69709cabe8dc592434c1c998fd2a6e8c4dc77ba8a82c5db35e5403aa2eca7a0
3
+ size 54805232
dataset/fr.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0c6514e478d65eb6b851c551bf5429b41858afa9e30c01bd21472e579aa1f17
3
+ size 55584951
dataset/it.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:08ab92f2ff04710d3d06ed14e48144ce9e06b6005f60f7464c60e0e246d0538e
3
+ size 59584208
dataset/nl.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:81a42e492e3b22e0cd38be687976cde0425ab2825979fff676b6c7ef6f7e414f
3
+ size 39621455
dataset/pl.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4ac94a2574933491091af59a848e5376a699de7d7b8241fce9d1b1210edaf855
3
+ size 44953474
dataset/pt.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d0266b95f3cb9867ad5a83e947ce7b7f9bd3a9edc605b5d3f09b3d5d341286b6
3
+ size 51433608
dataset/ru.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1621b8600571cbe9180c3c25becc01c41776192ff4a8691a961eb1bc49de1358
3
+ size 51908152
multinerd.py ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ NER dataset compiled by T-NER library https://github.com/asahi417/tner/tree/master/tner """
2
+ import json
3
+ from itertools import chain
4
+ import datasets
5
+
6
+ logger = datasets.logging.get_logger(__name__)
7
+ _DESCRIPTION = """[wikineural](https://aclanthology.org/2021.findings-emnlp.215/)"""
8
+ _NAME = "wikineural"
9
+ _VERSION = "1.0.0"
10
+ _CITATION = """
11
+ @inproceedings{tedeschi-etal-2021-wikineural-combined,
12
+ title = "{W}iki{NE}u{R}al: {C}ombined Neural and Knowledge-based Silver Data Creation for Multilingual {NER}",
13
+ author = "Tedeschi, Simone and
14
+ Maiorca, Valentino and
15
+ Campolungo, Niccol{\`o} and
16
+ Cecconi, Francesco and
17
+ Navigli, Roberto",
18
+ booktitle = "Findings of the Association for Computational Linguistics: EMNLP 2021",
19
+ month = nov,
20
+ year = "2021",
21
+ address = "Punta Cana, Dominican Republic",
22
+ publisher = "Association for Computational Linguistics",
23
+ url = "https://aclanthology.org/2021.findings-emnlp.215",
24
+ doi = "10.18653/v1/2021.findings-emnlp.215",
25
+ pages = "2521--2533",
26
+ abstract = "Multilingual Named Entity Recognition (NER) is a key intermediate task which is needed in many areas of NLP. In this paper, we address the well-known issue of data scarcity in NER, especially relevant when moving to a multilingual scenario, and go beyond current approaches to the creation of multilingual silver data for the task. We exploit the texts of Wikipedia and introduce a new methodology based on the effective combination of knowledge-based approaches and neural models, together with a novel domain adaptation technique, to produce high-quality training corpora for NER. We evaluate our datasets extensively on standard benchmarks for NER, yielding substantial improvements up to 6 span-based F1-score points over previous state-of-the-art systems for data creation.",
27
+ }
28
+ """
29
+
30
+ _HOME_PAGE = "https://github.com/asahi417/tner"
31
+ _URL = f'https://huggingface.co/datasets/tner/{_NAME}/resolve/main/dataset'
32
+ _LANGUAGE = ['de', 'en', 'es', 'fr', 'it', 'nl', 'pl', 'pt', 'ru']
33
+ _URLS = {
34
+ l: {
35
+ str(datasets.Split.TEST): [f'{_URL}/{l}/test.jsonl'],
36
+ str(datasets.Split.TRAIN): [f'{_URL}/{l}/train.jsonl'],
37
+ str(datasets.Split.VALIDATION): [f'{_URL}/{l}/dev.jsonl']
38
+ } for l in _LANGUAGE
39
+ }
40
+
41
+
42
+ class WikiNeuralConfig(datasets.BuilderConfig):
43
+ """BuilderConfig"""
44
+
45
+ def __init__(self, **kwargs):
46
+ """BuilderConfig.
47
+
48
+ Args:
49
+ **kwargs: keyword arguments forwarded to super.
50
+ """
51
+ super(WikiNeuralConfig, self).__init__(**kwargs)
52
+
53
+
54
+ class WikiNeural(datasets.GeneratorBasedBuilder):
55
+ """Dataset."""
56
+
57
+ BUILDER_CONFIGS = [
58
+ WikiNeuralConfig(name=l, version=datasets.Version(_VERSION), description=f"{_DESCRIPTION} (language: {l})") for l in _LANGUAGE
59
+ ]
60
+
61
+ def _split_generators(self, dl_manager):
62
+ downloaded_file = dl_manager.download_and_extract(_URLS[self.config.name])
63
+ return [datasets.SplitGenerator(name=i, gen_kwargs={"filepaths": downloaded_file[str(i)]})
64
+ for i in [datasets.Split.TRAIN, datasets.Split.VALIDATION, datasets.Split.TEST]]
65
+
66
+ def _generate_examples(self, filepaths):
67
+ _key = 0
68
+ for filepath in filepaths:
69
+ logger.info(f"generating examples from = {filepath}")
70
+ with open(filepath, encoding="utf-8") as f:
71
+ _list = [i for i in f.read().split('\n') if len(i) > 0]
72
+ for i in _list:
73
+ data = json.loads(i)
74
+ yield _key, data
75
+ _key += 1
76
+
77
+ def _info(self):
78
+ return datasets.DatasetInfo(
79
+ description=_DESCRIPTION,
80
+ features=datasets.Features(
81
+ {
82
+ "tokens": datasets.Sequence(datasets.Value("string")),
83
+ "tags": datasets.Sequence(datasets.Value("int32")),
84
+ }
85
+ ),
86
+ supervised_keys=None,
87
+ homepage=_HOME_PAGE,
88
+ citation=_CITATION,
89
+ )