tahamajs commited on
Commit
7eb9724
·
verified ·
1 Parent(s): b4838ff

Update Readme

Browse files
Files changed (1) hide show
  1. README.md +44 -24
README.md CHANGED
@@ -1,26 +1,46 @@
1
  ---
2
- dataset_info:
3
- features:
4
- - name: instruction
5
- dtype: string
6
- - name: input
7
- dtype: string
8
- - name: output
9
- dtype: string
10
- splits:
11
- - name: train
12
- num_bytes: 1230221
13
- num_examples: 926
14
- - name: test
15
- num_bytes: 137322
16
- num_examples: 103
17
- download_size: 380623
18
- dataset_size: 1367543
19
- configs:
20
- - config_name: default
21
- data_files:
22
- - split: train
23
- path: data/train-*
24
- - split: test
25
- path: data/test-*
26
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ license: mit
3
+ language: en
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
+
6
+ # Bitcoin Price Prediction Dataset (60d History -> 4d Forecast)
7
+
8
+ This dataset is designed for fine-tuning Large Language Models (LLMs) on a time-series forecasting task. Each sample contains 60 days of historical financial and social media data to predict the next 4 days of Bitcoin's closing price.
9
+
10
+ ## Dataset Description
11
+
12
+ The dataset was generated by combining two primary sources:
13
+ 1. **Financial Data:** Historical daily prices for Bitcoin (BTC), Gold (GC=F), Crude Oil (CL=F), S&P 500 (^GSPC), and the US Dollar Index (DX-Y.NYB) were fetched from Yahoo Finance.
14
+ 2. **Social Media Data:** The [Bitcoin Tweets Dataset](https://www.kaggle.com/datasets/kaushiksuresh147/bitcoin-tweets) was used to extract daily tweet volume and sample tweet texts.
15
+
16
+ ### Features Included in the Prompt:
17
+ - **60-Day Historical BTC Prices**: The core time-series data.
18
+ - **Technical Indicators**: 14-day RSI, 50-day EMA, and 200-day EMA for Bitcoin.
19
+ - **Macroeconomic Context**: Daily closing prices of Gold, Oil, S&P 500, and the US Dollar Index.
20
+ - **Social Media Sentiment**: A sample of 4 tweets for the most recent day in the historical window.
21
+
22
+ ## Data Fields
23
+
24
+ The dataset is structured for instruction fine-tuning and contains three columns:
25
+
26
+ - `instruction`: A string containing the comma-separated closing prices of Bitcoin for the last 60 days.
27
+ - `input`: A detailed text block containing all the contextual information (technical indicators, macro data, sample tweets) for the most recent day of the historical period.
28
+ - `output`: A string containing the comma-separated closing prices of Bitcoin for the next 4 days (the prediction target).
29
+
30
+ ## Splits
31
+
32
+ - **train**: The training split (`train_dataset.json`).
33
+ - **test**: The validation/test split (`val_dataset.json`).
34
+
35
+ ## Intended Use
36
+
37
+ This dataset is intended to be used with the `SFTTrainer` from the TRL library or similar frameworks to fine-tune models like Llama 3 for complex, multi-modal time-series forecasting tasks.
38
+
39
+ Example prompt structure:
40
+ ```json
41
+ {{
42
+ "instruction": "45123.45, 45321.89, ... (60 days of prices)",
43
+ "input": "Based on the historical data from the last 60 days, predict the Bitcoin closing prices for the next 4 days. The prediction period starts on 2023-11-20 (Weekday). The most recent day's technical analysis (2023-11-19): ...",
44
+ "output": "46123.78, 46050.12, 46300.50, 45987.32"
45
+ }}
46
+ ```