Datasets:
Update README.md
Browse files
README.md
CHANGED
|
@@ -11,65 +11,158 @@ tags:
|
|
| 11 |
- remote-sensing
|
| 12 |
pretty_name: cloudsen12plus
|
| 13 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
# cloudsen12plus
|
| 15 |
|
| 16 |
****The largest dataset of expert-labeled pixels for cloud and cloud shadow detection in Sentinel-2****
|
| 17 |
|
| 18 |
|
| 19 |
-
CloudSEN12+ is a significant extension of the CloudSEN12 dataset, which doubles the number of
|
| 20 |
expert-reviewed labels, making it, by a large margin, the largest cloud detection dataset to
|
| 21 |
date for Sentinel-2. All labels from the previous version have been curated and refined, enhancing
|
| 22 |
-
the dataset's
|
| 23 |
domain and allows anyone to use, modify, and distribute it without permission or attribution.
|
| 24 |
-
|
|
|
|
| 25 |
patches are divisible by 32. The padding is filled with zeros in the left and bottom sides of the
|
| 26 |
image. For those who prefer traditional storage formats, GeoTIFF files are available in our
|
| 27 |
[ScienceDataBank](https://www.scidb.cn/en/detail?dataSetId=2036f4657b094edfbb099053d6024b08&version=V1)
|
| 28 |
repository.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
<center>
|
| 30 |
<img src='https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/9UA4U3WObVeq7BAcf37-C.png' alt='drawing' width='50%'/>
|
| 31 |
</center>
|
| 32 |
*CloudSEN12+ spatial coverage. The terms p509 and p2000 denote the patch size 509 × 509 and 2000 × 2000,
|
| 33 |
respectively. `high`, `scribble`, and `nolabel` refer to the types of expert-labeled annotations*
|
| 34 |
|
| 35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
|
| 38 |
Load this dataset using the `tacoreader` library.
|
|
|
|
| 39 |
```python
|
| 40 |
import tacoreader
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
```
|
| 43 |
|
|
|
|
|
|
|
|
|
|
| 44 |
|
| 45 |
|
| 46 |
-
Or in R:
|
| 47 |
-
```r
|
| 48 |
-
library(tacoreader)
|
| 49 |
-
dataset <- tacoreader::load('...')
|
| 50 |
-
```
|
| 51 |
## 🛰️ Sensor Information
|
| 52 |
|
| 53 |
-
|
| 54 |
The sensor related to the dataset: **sentinel2msi**
|
| 55 |
-
## 🎯 Task
|
| 56 |
|
|
|
|
| 57 |
|
| 58 |
The task associated with this dataset: **semantic-segmentation**
|
| 59 |
-
## 📂 Original Data Repository
|
| 60 |
|
|
|
|
| 61 |
|
| 62 |
Source location of the raw data:**[https://huggingface.co/datasets/isp-uv-es/CloudSEN12Plus](https://huggingface.co/datasets/isp-uv-es/CloudSEN12Plus)**
|
| 63 |
-
## 💬 Discussion
|
| 64 |
|
|
|
|
| 65 |
|
| 66 |
Insights or clarifications about the dataset: **[https://huggingface.co/datasets/tacofoundation/cloudsen12/discussions](https://huggingface.co/datasets/tacofoundation/cloudsen12/discussions)**
|
| 67 |
-
## 🔀 Split Strategy
|
| 68 |
|
|
|
|
| 69 |
|
| 70 |
How the dataset is divided for training, validation, and testing: **stratified**
|
| 71 |
-
## 📚 Scientific Publications
|
| 72 |
|
|
|
|
| 73 |
|
| 74 |
Publications that reference or describe the dataset.
|
| 75 |
|
|
@@ -90,9 +183,8 @@ Publications that reference or describe the dataset.
|
|
| 90 |
}
|
| 91 |
```
|
| 92 |
|
| 93 |
-
|
| 94 |
-
|
| 95 |
### Publication 02
|
|
|
|
| 96 |
- **DOI**: [10.1109/IGARSS52108.2023.10282381](10.1109/IGARSS52108.2023.10282381)
|
| 97 |
- **Summary**: Exploration of incorrect annotations in cloud semantic segmentation datasets.
|
| 98 |
- **BibTeX Citation**:
|
|
@@ -107,9 +199,8 @@ Publications that reference or describe the dataset.
|
|
| 107 |
}
|
| 108 |
```
|
| 109 |
|
| 110 |
-
|
| 111 |
-
|
| 112 |
### Publication 03
|
|
|
|
| 113 |
- **DOI**: [10.1016/j.dib.2024.110852](10.1016/j.dib.2024.110852)
|
| 114 |
- **Summary**: Extended version of CloudSEN12. We include 2000 x 2000 patches to the dataset.
|
| 115 |
- **BibTeX Citation**:
|
|
@@ -157,7 +248,8 @@ The dataset contains four classes: clear, thick cloud, thin cloud, and cloud sha
|
|
| 157 |
## 🌈 Optical Bands
|
| 158 |
|
| 159 |
|
| 160 |
-
Spectral bands related to the sensor
|
|
|
|
| 161 |
|**Name**|**Common Name**|**Description**|**Center Wavelength**|**Full Width Half Max**|**Index**|
|
| 162 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|
| 163 |
|B01|coastal aerosol|Band 1 - Coastal aerosol - 60m|443.5|17.0|0|
|
|
@@ -173,3 +265,22 @@ Spectral bands related to the sensor.
|
|
| 173 |
|B10|cirrus|Band 10 - Cirrus - 60m|1375.5|31.0|10|
|
| 174 |
|B11|SWIR 1|Band 11 - Shortwave infrared 1 - 20m|1613.5|89.0|11|
|
| 175 |
|B12|SWIR 2|Band 12 - Shortwave infrared 2 - 20m|2199.5|173.0|12|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
- remote-sensing
|
| 12 |
pretty_name: cloudsen12plus
|
| 13 |
---
|
| 14 |
+
|
| 15 |
+
<div style="text-align: center; border: 1px solid #ddd; border-radius: 10px; padding: 15px; max-width: 250px; margin: auto; background-color: #f9f9f9;">
|
| 16 |
+
|
| 17 |
+

|
| 18 |
+
|
| 19 |
+
<b><p>This dataset follows the TACO specification.</p></b>
|
| 20 |
+
</div>
|
| 21 |
+
|
| 22 |
+
|
| 23 |
# cloudsen12plus
|
| 24 |
|
| 25 |
****The largest dataset of expert-labeled pixels for cloud and cloud shadow detection in Sentinel-2****
|
| 26 |
|
| 27 |
|
| 28 |
+
CloudSEN12+ version 1.1.0 is a significant extension of the CloudSEN12 dataset, which doubles the number of
|
| 29 |
expert-reviewed labels, making it, by a large margin, the largest cloud detection dataset to
|
| 30 |
date for Sentinel-2. All labels from the previous version have been curated and refined, enhancing
|
| 31 |
+
the dataset's truestworthiness. This new release is licensed under CC0, which puts it in the public
|
| 32 |
domain and allows anyone to use, modify, and distribute it without permission or attribution.
|
| 33 |
+
|
| 34 |
+
The images are padded from 509x509 to 512x512 and 2000x2000 to 2048x2048 to ensure that the
|
| 35 |
patches are divisible by 32. The padding is filled with zeros in the left and bottom sides of the
|
| 36 |
image. For those who prefer traditional storage formats, GeoTIFF files are available in our
|
| 37 |
[ScienceDataBank](https://www.scidb.cn/en/detail?dataSetId=2036f4657b094edfbb099053d6024b08&version=V1)
|
| 38 |
repository.
|
| 39 |
+
|
| 40 |
+
`CloudSEN12+` v.1.1.0 offers three distinct modes, tailored for diverse research and application needs:
|
| 41 |
+
|
| 42 |
+
- **`cloudsen12-l1c`**: Patches derived from Sentinel-2 Level-1C imagery, including high-quality labels, scribble annotations, and unlabeled data.
|
| 43 |
+
|
| 44 |
+
- **`cloudsen12-l2a`**: Similar to cloudsen12-l1c but based on Sentinel-2 Level-2A data as processed by Google Earth Engine.
|
| 45 |
+
|
| 46 |
+
- **`cloudsen12-extra`**: A supplementary collection of metadata to enhance contextual understanding of landscapes. Cloud masks from multiple sources have been normalized to align with the CloudSEN12 class schema. This mode includes:
|
| 47 |
+
- **`s1_vv:`** Normalized Sentinel-1 Global Backscatter Model Land Surface (VV polarization).
|
| 48 |
+
- **`s1_vh:`** Normalized Sentinel-1 Global Backscatter Model Land Surface (VH polarization).
|
| 49 |
+
- **`elevation:`** Elevation data (meters) sourced from the MERIT Hydro dataset.
|
| 50 |
+
- **`LC10:`** ESA WorldCover 10m v100 land cover product.
|
| 51 |
+
- **`cloudmask_qa:`** Cloud mask from Sentinel-2 Level-1C.
|
| 52 |
+
- **`cloudmask_sen2cor:`** Cloud mask from Sentinel-2 Level-2A.
|
| 53 |
+
- **`cloudmask_cloudscore:`** Cloud detection results from Google Cloud Masking.
|
| 54 |
+
- **`cloudmask_s2cloudless:`** Cloud mask generated by Sentinel Hub Cloud Detector.
|
| 55 |
+
- **`cloudmask_unetmobv2:`** A cloud mask produced by a UnetMobV2 model trained on the CloudSEN12 dataset.
|
| 56 |
+
|
| 57 |
+
<center>
|
| 58 |
+
<img src='https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/9UA4U3WObVeq7BAcf37-C.png' alt='drawing' width='50%'/>
|
| 59 |
+
</center>
|
| 60 |
+
|
| 61 |
+
*CloudSEN12+ spatial coverage. The terms p509 and p2000 denote the patch size 509 × 509 and 2000 × 2000,
|
| 62 |
+
respectively. `high`, `scribble`, and `nolabel` refer to the types of expert-labeled annotations*
|
| 63 |
+
|
| 64 |
+
- Changelog:
|
| 65 |
+
Version 1.1.0:
|
| 66 |
+
- We save all GeoTIFF files with discard_lsb=2 to improve the compression ratio.
|
| 67 |
+
- Fixed 2000x2000 rotated patches. The datapoints are now correctly oriented. Check the patches:
|
| 68 |
+
- ROI_2526__20200709T105031_20200709T105719_T31UDQ
|
| 69 |
+
- ROI_0070__20190708T130251_20190708T130252_T24MUA
|
| 70 |
+
- ROI_4565__20200530T100029_20200530T100502_T32TQP
|
| 71 |
+
- Improved the quality of the following patches:
|
| 72 |
+
- ROI_1098__20200515T190909_20200515T191310_T11WPN
|
| 73 |
+
- ROI_1735__20190814T163849_20190814T164716_T15SXS
|
| 74 |
+
- ROI_0760__20190516T022551_20190516T022553_T56WMD
|
| 75 |
+
- ROI_3696__20200419T075611_20200419T080344_T35MRN
|
| 76 |
+
- ROI_2864__20170529T105621_20170529T110523_T31TCN
|
| 77 |
+
- We removed the following patches due to poor quality:
|
| 78 |
+
- ROI_3980__20190228T005641_20190228T005640_T58WDB
|
| 79 |
+
- ROI_1489__20210228T070831_20210228T070834_T40TDP
|
| 80 |
+
|
| 81 |
+
- Consideration:
|
| 82 |
+
- The field `roi_id` field serves as a unique identifier for the geographical location of each patch. In other words, it is used to link S2 images with
|
| 83 |
+
a specific geographic location. However, the roi_id between the 509x509 and 2000x2000 patches are
|
| 84 |
+
not the same. For example, the roid_id: `ROI_0008` in the 509x509 patches is not the same as the
|
| 85 |
+
`ROI_0008` in the 2000x2000 patches. In this version, we fixed this issue by summing the max value
|
| 86 |
+
of the 509x509 patches to the 2000x2000 patches. In this way, the `roi_id` between the 509x509 and
|
| 87 |
+
2000x2000 patches are unique. If users of 2000x2000 patches need to match the original roi_id published
|
| 88 |
+
in the previous version, they can use the following formula:
|
| 89 |
+
- `old_roi_id_2000 = old_roi_id_2000 - 12101`
|
| 90 |
+
where `12101` is the max value of the 509 patches. We also reported the previous roi as old_roi_id.
|
| 91 |
+
|
| 92 |
<center>
|
| 93 |
<img src='https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/9UA4U3WObVeq7BAcf37-C.png' alt='drawing' width='50%'/>
|
| 94 |
</center>
|
| 95 |
*CloudSEN12+ spatial coverage. The terms p509 and p2000 denote the patch size 509 × 509 and 2000 × 2000,
|
| 96 |
respectively. `high`, `scribble`, and `nolabel` refer to the types of expert-labeled annotations*
|
| 97 |
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
## 🔄 Reproducible Example
|
| 101 |
+
|
| 102 |
+
<a target="_blank" href="https://colab.research.google.com/drive/1U9n40rwdnn73bdWruONA3hIs1-H3f74Q">
|
| 103 |
+
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
|
| 104 |
+
</a>
|
| 105 |
|
| 106 |
|
| 107 |
Load this dataset using the `tacoreader` library.
|
| 108 |
+
|
| 109 |
```python
|
| 110 |
import tacoreader
|
| 111 |
+
import rasterio as rio
|
| 112 |
+
|
| 113 |
+
print(tacoreader.__version__) # 0.5.2
|
| 114 |
+
|
| 115 |
+
# Remotely load the Cloud-Optimized Dataset
|
| 116 |
+
dataset = tacoreader.load("tacofoundation:cloudsen12-l1c")
|
| 117 |
+
#dataset = tacoreader.load("tacofoundation:cloudsen12-l2a")
|
| 118 |
+
|
| 119 |
+
# Read a sample
|
| 120 |
+
sample_idx = 2422
|
| 121 |
+
s2_l1c = dataset.read(sample_idx).read(0)
|
| 122 |
+
s2_label = dataset.read(sample_idx).read(1)
|
| 123 |
+
|
| 124 |
+
# Retrieve the data
|
| 125 |
+
with rio.open(s2_l1c) as src, rio.open(s2_label) as dst:
|
| 126 |
+
s2_l1c_data = src.read([4, 3, 2], window=rio.windows.Window(0, 0, 512, 512))
|
| 127 |
+
s2_label_data = dst.read(window=rio.windows.Window(0, 0, 512, 512))
|
| 128 |
+
|
| 129 |
+
# Display
|
| 130 |
+
fig, ax = plt.subplots(1, 2, figsize=(10, 5))
|
| 131 |
+
ax[0].imshow(s2_l1c_data.transpose(1, 2, 0) / 3000)
|
| 132 |
+
ax[0].set_title("Sentinel-2 L1C")
|
| 133 |
+
ax[1].imshow(s2_label_data[0])
|
| 134 |
+
ax[1].set_title("Human Label")
|
| 135 |
+
plt.tight_layout()
|
| 136 |
+
plt.savefig("taco_check.png")
|
| 137 |
+
plt.close(fig)
|
| 138 |
```
|
| 139 |
|
| 140 |
+
<center>
|
| 141 |
+
<img src='https://cdn-uploads.huggingface.co/production/uploads/6402474cfa1acad600659e92/0nRv7sqMRMNY-TVkY2kh7.png' alt='drawing' width='70%'/>
|
| 142 |
+
</center>
|
| 143 |
|
| 144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
## 🛰️ Sensor Information
|
| 146 |
|
|
|
|
| 147 |
The sensor related to the dataset: **sentinel2msi**
|
|
|
|
| 148 |
|
| 149 |
+
## 🎯 Task
|
| 150 |
|
| 151 |
The task associated with this dataset: **semantic-segmentation**
|
|
|
|
| 152 |
|
| 153 |
+
## 📂 Original Data Repository
|
| 154 |
|
| 155 |
Source location of the raw data:**[https://huggingface.co/datasets/isp-uv-es/CloudSEN12Plus](https://huggingface.co/datasets/isp-uv-es/CloudSEN12Plus)**
|
|
|
|
| 156 |
|
| 157 |
+
## 💬 Discussion
|
| 158 |
|
| 159 |
Insights or clarifications about the dataset: **[https://huggingface.co/datasets/tacofoundation/cloudsen12/discussions](https://huggingface.co/datasets/tacofoundation/cloudsen12/discussions)**
|
|
|
|
| 160 |
|
| 161 |
+
## 🔀 Split Strategy
|
| 162 |
|
| 163 |
How the dataset is divided for training, validation, and testing: **stratified**
|
|
|
|
| 164 |
|
| 165 |
+
## 📚 Scientific Publications
|
| 166 |
|
| 167 |
Publications that reference or describe the dataset.
|
| 168 |
|
|
|
|
| 183 |
}
|
| 184 |
```
|
| 185 |
|
|
|
|
|
|
|
| 186 |
### Publication 02
|
| 187 |
+
|
| 188 |
- **DOI**: [10.1109/IGARSS52108.2023.10282381](10.1109/IGARSS52108.2023.10282381)
|
| 189 |
- **Summary**: Exploration of incorrect annotations in cloud semantic segmentation datasets.
|
| 190 |
- **BibTeX Citation**:
|
|
|
|
| 199 |
}
|
| 200 |
```
|
| 201 |
|
|
|
|
|
|
|
| 202 |
### Publication 03
|
| 203 |
+
|
| 204 |
- **DOI**: [10.1016/j.dib.2024.110852](10.1016/j.dib.2024.110852)
|
| 205 |
- **Summary**: Extended version of CloudSEN12. We include 2000 x 2000 patches to the dataset.
|
| 206 |
- **BibTeX Citation**:
|
|
|
|
| 248 |
## 🌈 Optical Bands
|
| 249 |
|
| 250 |
|
| 251 |
+
Spectral bands related to the sensor: L1C
|
| 252 |
+
|
| 253 |
|**Name**|**Common Name**|**Description**|**Center Wavelength**|**Full Width Half Max**|**Index**|
|
| 254 |
| :--- | :--- | :--- | :--- | :--- | :--- |
|
| 255 |
|B01|coastal aerosol|Band 1 - Coastal aerosol - 60m|443.5|17.0|0|
|
|
|
|
| 265 |
|B10|cirrus|Band 10 - Cirrus - 60m|1375.5|31.0|10|
|
| 266 |
|B11|SWIR 1|Band 11 - Shortwave infrared 1 - 20m|1613.5|89.0|11|
|
| 267 |
|B12|SWIR 2|Band 12 - Shortwave infrared 2 - 20m|2199.5|173.0|12|
|
| 268 |
+
|
| 269 |
+
Spectral bands related to the sensor: L2A
|
| 270 |
+
|
| 271 |
+
| Band | Name | Description | Center Wavelength (nm) | Bandwidth (nm) | Index |
|
| 272 |
+
| :--- | :----------- | :------------------------------------------------------------------------------------------- | :--------------------- | :------------ | :---- |
|
| 273 |
+
| B01 | Coastal aerosol | Band 1 - Coastal aerosol - 60m | 443.5 | 17.0 | 0 |
|
| 274 |
+
| B02 | Blue | Band 2 - Blue - 10m | 496.5 | 53.0 | 1 |
|
| 275 |
+
| B03 | Green | Band 3 - Green - 10m | 560.0 | 34.0 | 2 |
|
| 276 |
+
| B04 | Red | Band 4 - Red - 10m | 664.5 | 29.0 | 3 |
|
| 277 |
+
| B05 | Red edge 1 | Band 5 - Vegetation red edge 1 - 20m | 704.5 | 13.0 | 4 |
|
| 278 |
+
| B06 | Red edge 2 | Band 6 - Vegetation red edge 2 - 20m | 740.5 | 13.0 | 5 |
|
| 279 |
+
| B07 | Red edge 3 | Band 7 - Vegetation red edge 3 - 20m | 783.0 | 18.0 | 6 |
|
| 280 |
+
| B08 | NIR | Band 8 - Near infrared - 10m | 840.0 | 114.0 | 7 |
|
| 281 |
+
| B8A | Red edge 4 | Band 8A - Vegetation red edge 4 - 20m | 864.5 | 19.0 | 8 |
|
| 282 |
+
| B09 | Water vapor | Band 9 - Water vapor - 60m | 945.0 | 18.0 | 9 |
|
| 283 |
+
| B11 | SWIR 1 | Band 11 - Shortwave infrared 1 - 20m | 1613.5 | 89.0 | 10 |
|
| 284 |
+
| B12 | SWIR 2 | Band 12 - Shortwave infrared 2 - 20m | 2199.5 | 173.0 | 11 |
|
| 285 |
+
| AOT | - | Aerosol Optical Thickness | - | - | 12 |
|
| 286 |
+
| WVP | - | Water Vapor Pressure. The height the water would occupy if the vapor were condensed into liquid and spread evenly across the column | - | - | 13 |
|