Upload blackbox yahpo-iaml_super
Browse files
yahpo/iaml_super/best_params_resnet.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"d": 512, "d_hidden_factor": 3.9989508868016372, "hidden_dropout": 0.04468688309244354, "lr": 0.00011999115120321, "mixup": true, "n_layers": 6, "opt_tfms_auc": false, "opt_tfms_f1": false, "opt_tfms_glmnet.alpha": false, "opt_tfms_glmnet.s": true, "opt_tfms_ias": true, "opt_tfms_logloss": false, "opt_tfms_mec": false, "opt_tfms_mmce": true, "opt_tfms_rammodel": false, "opt_tfms_rampredict": false, "opt_tfms_ramtrain": false, "opt_tfms_ranger.min.node.size": true, "opt_tfms_ranger.mtry.ratio": false, "opt_tfms_ranger.num.random.splits": false, "opt_tfms_ranger.num.trees": true, "opt_tfms_ranger.sample.fraction": true, "opt_tfms_rpart.cp": false, "opt_tfms_rpart.maxdepth": false, "opt_tfms_rpart.minbucket": true, "opt_tfms_rpart.minsplit": false, "opt_tfms_timepredict": true, "opt_tfms_timetrain": false, "opt_tfms_trainsize": false, "opt_tfms_xgboost.alpha": false, "opt_tfms_xgboost.colsample_bylevel": false, "opt_tfms_xgboost.colsample_bytree": false, "opt_tfms_xgboost.eta": true, "opt_tfms_xgboost.gamma": false, "opt_tfms_xgboost.lambda": true, "opt_tfms_xgboost.max_depth": true, "opt_tfms_xgboost.min_child_weight": true, "opt_tfms_xgboost.nrounds": true, "opt_tfms_xgboost.rate_drop": true, "opt_tfms_xgboost.skip_drop": false, "opt_tfms_xgboost.subsample": false, "tfms_glmnet.s": "tlog", "tfms_ias": "tnexp", "tfms_mmce": "tlog", "tfms_ranger.min.node.size": "tnexp", "tfms_ranger.num.trees": "tlog", "tfms_ranger.sample.fraction": "tnexp", "tfms_rpart.minbucket": "tlog", "tfms_timepredict": "tnexp", "tfms_xgboost.eta": "tlog", "tfms_xgboost.lambda": "tlog", "tfms_xgboost.max_depth": "tlog", "tfms_xgboost.min_child_weight": "tnexp", "tfms_xgboost.nrounds": "tlog", "tfms_xgboost.rate_drop": "tlog", "use_residual_dropout": false}
|
yahpo/iaml_super/config_space.json
ADDED
|
@@ -0,0 +1,555 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"hyperparameters": [
|
| 3 |
+
{
|
| 4 |
+
"name": "learner",
|
| 5 |
+
"type": "categorical",
|
| 6 |
+
"choices": [
|
| 7 |
+
"ranger",
|
| 8 |
+
"glmnet",
|
| 9 |
+
"xgboost",
|
| 10 |
+
"rpart"
|
| 11 |
+
],
|
| 12 |
+
"default": "ranger",
|
| 13 |
+
"probabilities": null
|
| 14 |
+
},
|
| 15 |
+
{
|
| 16 |
+
"name": "task_id",
|
| 17 |
+
"type": "categorical",
|
| 18 |
+
"choices": [
|
| 19 |
+
"40981",
|
| 20 |
+
"41146",
|
| 21 |
+
"1489",
|
| 22 |
+
"1067"
|
| 23 |
+
],
|
| 24 |
+
"default": "40981",
|
| 25 |
+
"probabilities": null
|
| 26 |
+
},
|
| 27 |
+
{
|
| 28 |
+
"name": "trainsize",
|
| 29 |
+
"type": "uniform_float",
|
| 30 |
+
"log": false,
|
| 31 |
+
"lower": 0.03,
|
| 32 |
+
"upper": 1.0,
|
| 33 |
+
"default": 0.525
|
| 34 |
+
},
|
| 35 |
+
{
|
| 36 |
+
"name": "glmnet.alpha",
|
| 37 |
+
"type": "uniform_float",
|
| 38 |
+
"log": false,
|
| 39 |
+
"lower": 0.0,
|
| 40 |
+
"upper": 1.0,
|
| 41 |
+
"default": 0.5
|
| 42 |
+
},
|
| 43 |
+
{
|
| 44 |
+
"name": "glmnet.s",
|
| 45 |
+
"type": "uniform_float",
|
| 46 |
+
"log": true,
|
| 47 |
+
"lower": 0.00010000000000000009,
|
| 48 |
+
"upper": 999.9999999999998,
|
| 49 |
+
"default": 0.316227766
|
| 50 |
+
},
|
| 51 |
+
{
|
| 52 |
+
"name": "ranger.min.node.size",
|
| 53 |
+
"type": "uniform_int",
|
| 54 |
+
"log": false,
|
| 55 |
+
"lower": 1,
|
| 56 |
+
"upper": 100,
|
| 57 |
+
"default": 50
|
| 58 |
+
},
|
| 59 |
+
{
|
| 60 |
+
"name": "ranger.mtry.ratio",
|
| 61 |
+
"type": "uniform_float",
|
| 62 |
+
"log": false,
|
| 63 |
+
"lower": 0.0,
|
| 64 |
+
"upper": 1.0,
|
| 65 |
+
"default": 0.5
|
| 66 |
+
},
|
| 67 |
+
{
|
| 68 |
+
"name": "ranger.num.trees",
|
| 69 |
+
"type": "uniform_int",
|
| 70 |
+
"log": false,
|
| 71 |
+
"lower": 1,
|
| 72 |
+
"upper": 2000,
|
| 73 |
+
"default": 1000
|
| 74 |
+
},
|
| 75 |
+
{
|
| 76 |
+
"name": "ranger.replace",
|
| 77 |
+
"type": "categorical",
|
| 78 |
+
"choices": [
|
| 79 |
+
"TRUE",
|
| 80 |
+
"FALSE"
|
| 81 |
+
],
|
| 82 |
+
"default": "TRUE",
|
| 83 |
+
"probabilities": null
|
| 84 |
+
},
|
| 85 |
+
{
|
| 86 |
+
"name": "ranger.respect.unordered.factors",
|
| 87 |
+
"type": "categorical",
|
| 88 |
+
"choices": [
|
| 89 |
+
"ignore",
|
| 90 |
+
"order",
|
| 91 |
+
"partition"
|
| 92 |
+
],
|
| 93 |
+
"default": "ignore",
|
| 94 |
+
"probabilities": null
|
| 95 |
+
},
|
| 96 |
+
{
|
| 97 |
+
"name": "ranger.sample.fraction",
|
| 98 |
+
"type": "uniform_float",
|
| 99 |
+
"log": false,
|
| 100 |
+
"lower": 0.1,
|
| 101 |
+
"upper": 1.0,
|
| 102 |
+
"default": 0.55
|
| 103 |
+
},
|
| 104 |
+
{
|
| 105 |
+
"name": "ranger.splitrule",
|
| 106 |
+
"type": "categorical",
|
| 107 |
+
"choices": [
|
| 108 |
+
"gini",
|
| 109 |
+
"extratrees"
|
| 110 |
+
],
|
| 111 |
+
"default": "gini",
|
| 112 |
+
"probabilities": null
|
| 113 |
+
},
|
| 114 |
+
{
|
| 115 |
+
"name": "rpart.cp",
|
| 116 |
+
"type": "uniform_float",
|
| 117 |
+
"log": true,
|
| 118 |
+
"lower": 0.00010000000000000009,
|
| 119 |
+
"upper": 1.0,
|
| 120 |
+
"default": 0.01
|
| 121 |
+
},
|
| 122 |
+
{
|
| 123 |
+
"name": "rpart.maxdepth",
|
| 124 |
+
"type": "uniform_int",
|
| 125 |
+
"log": false,
|
| 126 |
+
"lower": 1,
|
| 127 |
+
"upper": 30,
|
| 128 |
+
"default": 16
|
| 129 |
+
},
|
| 130 |
+
{
|
| 131 |
+
"name": "rpart.minbucket",
|
| 132 |
+
"type": "uniform_int",
|
| 133 |
+
"log": false,
|
| 134 |
+
"lower": 1,
|
| 135 |
+
"upper": 100,
|
| 136 |
+
"default": 50
|
| 137 |
+
},
|
| 138 |
+
{
|
| 139 |
+
"name": "rpart.minsplit",
|
| 140 |
+
"type": "uniform_int",
|
| 141 |
+
"log": false,
|
| 142 |
+
"lower": 1,
|
| 143 |
+
"upper": 100,
|
| 144 |
+
"default": 50
|
| 145 |
+
},
|
| 146 |
+
{
|
| 147 |
+
"name": "xgboost.alpha",
|
| 148 |
+
"type": "uniform_float",
|
| 149 |
+
"log": true,
|
| 150 |
+
"lower": 0.00010000000000000009,
|
| 151 |
+
"upper": 999.9999999999998,
|
| 152 |
+
"default": 0.316227766
|
| 153 |
+
},
|
| 154 |
+
{
|
| 155 |
+
"name": "xgboost.booster",
|
| 156 |
+
"type": "categorical",
|
| 157 |
+
"choices": [
|
| 158 |
+
"gblinear",
|
| 159 |
+
"gbtree",
|
| 160 |
+
"dart"
|
| 161 |
+
],
|
| 162 |
+
"default": "gblinear",
|
| 163 |
+
"probabilities": null
|
| 164 |
+
},
|
| 165 |
+
{
|
| 166 |
+
"name": "xgboost.lambda",
|
| 167 |
+
"type": "uniform_float",
|
| 168 |
+
"log": true,
|
| 169 |
+
"lower": 0.00010000000000000009,
|
| 170 |
+
"upper": 999.9999999999998,
|
| 171 |
+
"default": 0.316227766
|
| 172 |
+
},
|
| 173 |
+
{
|
| 174 |
+
"name": "xgboost.nrounds",
|
| 175 |
+
"type": "uniform_int",
|
| 176 |
+
"log": true,
|
| 177 |
+
"lower": 3,
|
| 178 |
+
"upper": 2000,
|
| 179 |
+
"default": 77
|
| 180 |
+
},
|
| 181 |
+
{
|
| 182 |
+
"name": "xgboost.subsample",
|
| 183 |
+
"type": "uniform_float",
|
| 184 |
+
"log": false,
|
| 185 |
+
"lower": 0.1,
|
| 186 |
+
"upper": 1.0,
|
| 187 |
+
"default": 0.55
|
| 188 |
+
},
|
| 189 |
+
{
|
| 190 |
+
"name": "ranger.num.random.splits",
|
| 191 |
+
"type": "uniform_int",
|
| 192 |
+
"log": false,
|
| 193 |
+
"lower": 1,
|
| 194 |
+
"upper": 100,
|
| 195 |
+
"default": 50
|
| 196 |
+
},
|
| 197 |
+
{
|
| 198 |
+
"name": "xgboost.colsample_bylevel",
|
| 199 |
+
"type": "uniform_float",
|
| 200 |
+
"log": false,
|
| 201 |
+
"lower": 0.01,
|
| 202 |
+
"upper": 1.0,
|
| 203 |
+
"default": 0.505
|
| 204 |
+
},
|
| 205 |
+
{
|
| 206 |
+
"name": "xgboost.colsample_bytree",
|
| 207 |
+
"type": "uniform_float",
|
| 208 |
+
"log": false,
|
| 209 |
+
"lower": 0.01,
|
| 210 |
+
"upper": 1.0,
|
| 211 |
+
"default": 0.505
|
| 212 |
+
},
|
| 213 |
+
{
|
| 214 |
+
"name": "xgboost.eta",
|
| 215 |
+
"type": "uniform_float",
|
| 216 |
+
"log": true,
|
| 217 |
+
"lower": 0.00010000000000000009,
|
| 218 |
+
"upper": 1.0,
|
| 219 |
+
"default": 0.01
|
| 220 |
+
},
|
| 221 |
+
{
|
| 222 |
+
"name": "xgboost.gamma",
|
| 223 |
+
"type": "uniform_float",
|
| 224 |
+
"log": true,
|
| 225 |
+
"lower": 0.00010000000000000009,
|
| 226 |
+
"upper": 6.999999999999999,
|
| 227 |
+
"default": 0.0264575131
|
| 228 |
+
},
|
| 229 |
+
{
|
| 230 |
+
"name": "xgboost.max_depth",
|
| 231 |
+
"type": "uniform_int",
|
| 232 |
+
"log": false,
|
| 233 |
+
"lower": 1,
|
| 234 |
+
"upper": 15,
|
| 235 |
+
"default": 8
|
| 236 |
+
},
|
| 237 |
+
{
|
| 238 |
+
"name": "xgboost.min_child_weight",
|
| 239 |
+
"type": "uniform_float",
|
| 240 |
+
"log": true,
|
| 241 |
+
"lower": 2.718281828459045,
|
| 242 |
+
"upper": 149.99999999999997,
|
| 243 |
+
"default": 20.1926292064
|
| 244 |
+
},
|
| 245 |
+
{
|
| 246 |
+
"name": "xgboost.rate_drop",
|
| 247 |
+
"type": "uniform_float",
|
| 248 |
+
"log": false,
|
| 249 |
+
"lower": 0.0,
|
| 250 |
+
"upper": 1.0,
|
| 251 |
+
"default": 0.5
|
| 252 |
+
},
|
| 253 |
+
{
|
| 254 |
+
"name": "xgboost.skip_drop",
|
| 255 |
+
"type": "uniform_float",
|
| 256 |
+
"log": false,
|
| 257 |
+
"lower": 0.0,
|
| 258 |
+
"upper": 1.0,
|
| 259 |
+
"default": 0.5
|
| 260 |
+
}
|
| 261 |
+
],
|
| 262 |
+
"conditions": [
|
| 263 |
+
{
|
| 264 |
+
"child": "glmnet.alpha",
|
| 265 |
+
"parent": "learner",
|
| 266 |
+
"type": "EQ",
|
| 267 |
+
"value": "glmnet"
|
| 268 |
+
},
|
| 269 |
+
{
|
| 270 |
+
"child": "glmnet.s",
|
| 271 |
+
"parent": "learner",
|
| 272 |
+
"type": "EQ",
|
| 273 |
+
"value": "glmnet"
|
| 274 |
+
},
|
| 275 |
+
{
|
| 276 |
+
"child": "ranger.min.node.size",
|
| 277 |
+
"parent": "learner",
|
| 278 |
+
"type": "EQ",
|
| 279 |
+
"value": "ranger"
|
| 280 |
+
},
|
| 281 |
+
{
|
| 282 |
+
"child": "ranger.mtry.ratio",
|
| 283 |
+
"parent": "learner",
|
| 284 |
+
"type": "EQ",
|
| 285 |
+
"value": "ranger"
|
| 286 |
+
},
|
| 287 |
+
{
|
| 288 |
+
"child": "ranger.num.trees",
|
| 289 |
+
"parent": "learner",
|
| 290 |
+
"type": "EQ",
|
| 291 |
+
"value": "ranger"
|
| 292 |
+
},
|
| 293 |
+
{
|
| 294 |
+
"child": "ranger.replace",
|
| 295 |
+
"parent": "learner",
|
| 296 |
+
"type": "EQ",
|
| 297 |
+
"value": "ranger"
|
| 298 |
+
},
|
| 299 |
+
{
|
| 300 |
+
"child": "ranger.respect.unordered.factors",
|
| 301 |
+
"parent": "learner",
|
| 302 |
+
"type": "EQ",
|
| 303 |
+
"value": "ranger"
|
| 304 |
+
},
|
| 305 |
+
{
|
| 306 |
+
"child": "ranger.sample.fraction",
|
| 307 |
+
"parent": "learner",
|
| 308 |
+
"type": "EQ",
|
| 309 |
+
"value": "ranger"
|
| 310 |
+
},
|
| 311 |
+
{
|
| 312 |
+
"child": "ranger.splitrule",
|
| 313 |
+
"parent": "learner",
|
| 314 |
+
"type": "EQ",
|
| 315 |
+
"value": "ranger"
|
| 316 |
+
},
|
| 317 |
+
{
|
| 318 |
+
"child": "rpart.cp",
|
| 319 |
+
"parent": "learner",
|
| 320 |
+
"type": "EQ",
|
| 321 |
+
"value": "rpart"
|
| 322 |
+
},
|
| 323 |
+
{
|
| 324 |
+
"child": "rpart.maxdepth",
|
| 325 |
+
"parent": "learner",
|
| 326 |
+
"type": "EQ",
|
| 327 |
+
"value": "rpart"
|
| 328 |
+
},
|
| 329 |
+
{
|
| 330 |
+
"child": "rpart.minbucket",
|
| 331 |
+
"parent": "learner",
|
| 332 |
+
"type": "EQ",
|
| 333 |
+
"value": "rpart"
|
| 334 |
+
},
|
| 335 |
+
{
|
| 336 |
+
"child": "rpart.minsplit",
|
| 337 |
+
"parent": "learner",
|
| 338 |
+
"type": "EQ",
|
| 339 |
+
"value": "rpart"
|
| 340 |
+
},
|
| 341 |
+
{
|
| 342 |
+
"child": "xgboost.alpha",
|
| 343 |
+
"parent": "learner",
|
| 344 |
+
"type": "EQ",
|
| 345 |
+
"value": "xgboost"
|
| 346 |
+
},
|
| 347 |
+
{
|
| 348 |
+
"child": "xgboost.booster",
|
| 349 |
+
"parent": "learner",
|
| 350 |
+
"type": "EQ",
|
| 351 |
+
"value": "xgboost"
|
| 352 |
+
},
|
| 353 |
+
{
|
| 354 |
+
"child": "xgboost.lambda",
|
| 355 |
+
"parent": "learner",
|
| 356 |
+
"type": "EQ",
|
| 357 |
+
"value": "xgboost"
|
| 358 |
+
},
|
| 359 |
+
{
|
| 360 |
+
"child": "xgboost.nrounds",
|
| 361 |
+
"parent": "learner",
|
| 362 |
+
"type": "EQ",
|
| 363 |
+
"value": "xgboost"
|
| 364 |
+
},
|
| 365 |
+
{
|
| 366 |
+
"child": "xgboost.subsample",
|
| 367 |
+
"parent": "learner",
|
| 368 |
+
"type": "EQ",
|
| 369 |
+
"value": "xgboost"
|
| 370 |
+
},
|
| 371 |
+
{
|
| 372 |
+
"child": "ranger.num.random.splits",
|
| 373 |
+
"type": "AND",
|
| 374 |
+
"conditions": [
|
| 375 |
+
{
|
| 376 |
+
"child": "ranger.num.random.splits",
|
| 377 |
+
"parent": "ranger.splitrule",
|
| 378 |
+
"type": "EQ",
|
| 379 |
+
"value": "extratrees"
|
| 380 |
+
},
|
| 381 |
+
{
|
| 382 |
+
"child": "ranger.num.random.splits",
|
| 383 |
+
"parent": "learner",
|
| 384 |
+
"type": "EQ",
|
| 385 |
+
"value": "ranger"
|
| 386 |
+
}
|
| 387 |
+
]
|
| 388 |
+
},
|
| 389 |
+
{
|
| 390 |
+
"child": "xgboost.colsample_bylevel",
|
| 391 |
+
"type": "AND",
|
| 392 |
+
"conditions": [
|
| 393 |
+
{
|
| 394 |
+
"child": "xgboost.colsample_bylevel",
|
| 395 |
+
"parent": "xgboost.booster",
|
| 396 |
+
"type": "IN",
|
| 397 |
+
"values": [
|
| 398 |
+
"dart",
|
| 399 |
+
"gbtree"
|
| 400 |
+
]
|
| 401 |
+
},
|
| 402 |
+
{
|
| 403 |
+
"child": "xgboost.colsample_bylevel",
|
| 404 |
+
"parent": "learner",
|
| 405 |
+
"type": "EQ",
|
| 406 |
+
"value": "xgboost"
|
| 407 |
+
}
|
| 408 |
+
]
|
| 409 |
+
},
|
| 410 |
+
{
|
| 411 |
+
"child": "xgboost.colsample_bytree",
|
| 412 |
+
"type": "AND",
|
| 413 |
+
"conditions": [
|
| 414 |
+
{
|
| 415 |
+
"child": "xgboost.colsample_bytree",
|
| 416 |
+
"parent": "xgboost.booster",
|
| 417 |
+
"type": "IN",
|
| 418 |
+
"values": [
|
| 419 |
+
"dart",
|
| 420 |
+
"gbtree"
|
| 421 |
+
]
|
| 422 |
+
},
|
| 423 |
+
{
|
| 424 |
+
"child": "xgboost.colsample_bytree",
|
| 425 |
+
"parent": "learner",
|
| 426 |
+
"type": "EQ",
|
| 427 |
+
"value": "xgboost"
|
| 428 |
+
}
|
| 429 |
+
]
|
| 430 |
+
},
|
| 431 |
+
{
|
| 432 |
+
"child": "xgboost.eta",
|
| 433 |
+
"type": "AND",
|
| 434 |
+
"conditions": [
|
| 435 |
+
{
|
| 436 |
+
"child": "xgboost.eta",
|
| 437 |
+
"parent": "xgboost.booster",
|
| 438 |
+
"type": "IN",
|
| 439 |
+
"values": [
|
| 440 |
+
"dart",
|
| 441 |
+
"gbtree"
|
| 442 |
+
]
|
| 443 |
+
},
|
| 444 |
+
{
|
| 445 |
+
"child": "xgboost.eta",
|
| 446 |
+
"parent": "learner",
|
| 447 |
+
"type": "EQ",
|
| 448 |
+
"value": "xgboost"
|
| 449 |
+
}
|
| 450 |
+
]
|
| 451 |
+
},
|
| 452 |
+
{
|
| 453 |
+
"child": "xgboost.gamma",
|
| 454 |
+
"type": "AND",
|
| 455 |
+
"conditions": [
|
| 456 |
+
{
|
| 457 |
+
"child": "xgboost.gamma",
|
| 458 |
+
"parent": "xgboost.booster",
|
| 459 |
+
"type": "IN",
|
| 460 |
+
"values": [
|
| 461 |
+
"dart",
|
| 462 |
+
"gbtree"
|
| 463 |
+
]
|
| 464 |
+
},
|
| 465 |
+
{
|
| 466 |
+
"child": "xgboost.gamma",
|
| 467 |
+
"parent": "learner",
|
| 468 |
+
"type": "EQ",
|
| 469 |
+
"value": "xgboost"
|
| 470 |
+
}
|
| 471 |
+
]
|
| 472 |
+
},
|
| 473 |
+
{
|
| 474 |
+
"child": "xgboost.max_depth",
|
| 475 |
+
"type": "AND",
|
| 476 |
+
"conditions": [
|
| 477 |
+
{
|
| 478 |
+
"child": "xgboost.max_depth",
|
| 479 |
+
"parent": "xgboost.booster",
|
| 480 |
+
"type": "IN",
|
| 481 |
+
"values": [
|
| 482 |
+
"dart",
|
| 483 |
+
"gbtree"
|
| 484 |
+
]
|
| 485 |
+
},
|
| 486 |
+
{
|
| 487 |
+
"child": "xgboost.max_depth",
|
| 488 |
+
"parent": "learner",
|
| 489 |
+
"type": "EQ",
|
| 490 |
+
"value": "xgboost"
|
| 491 |
+
}
|
| 492 |
+
]
|
| 493 |
+
},
|
| 494 |
+
{
|
| 495 |
+
"child": "xgboost.min_child_weight",
|
| 496 |
+
"type": "AND",
|
| 497 |
+
"conditions": [
|
| 498 |
+
{
|
| 499 |
+
"child": "xgboost.min_child_weight",
|
| 500 |
+
"parent": "xgboost.booster",
|
| 501 |
+
"type": "IN",
|
| 502 |
+
"values": [
|
| 503 |
+
"dart",
|
| 504 |
+
"gbtree"
|
| 505 |
+
]
|
| 506 |
+
},
|
| 507 |
+
{
|
| 508 |
+
"child": "xgboost.min_child_weight",
|
| 509 |
+
"parent": "learner",
|
| 510 |
+
"type": "EQ",
|
| 511 |
+
"value": "xgboost"
|
| 512 |
+
}
|
| 513 |
+
]
|
| 514 |
+
},
|
| 515 |
+
{
|
| 516 |
+
"child": "xgboost.rate_drop",
|
| 517 |
+
"type": "AND",
|
| 518 |
+
"conditions": [
|
| 519 |
+
{
|
| 520 |
+
"child": "xgboost.rate_drop",
|
| 521 |
+
"parent": "xgboost.booster",
|
| 522 |
+
"type": "EQ",
|
| 523 |
+
"value": "dart"
|
| 524 |
+
},
|
| 525 |
+
{
|
| 526 |
+
"child": "xgboost.rate_drop",
|
| 527 |
+
"parent": "learner",
|
| 528 |
+
"type": "EQ",
|
| 529 |
+
"value": "xgboost"
|
| 530 |
+
}
|
| 531 |
+
]
|
| 532 |
+
},
|
| 533 |
+
{
|
| 534 |
+
"child": "xgboost.skip_drop",
|
| 535 |
+
"type": "AND",
|
| 536 |
+
"conditions": [
|
| 537 |
+
{
|
| 538 |
+
"child": "xgboost.skip_drop",
|
| 539 |
+
"parent": "xgboost.booster",
|
| 540 |
+
"type": "EQ",
|
| 541 |
+
"value": "dart"
|
| 542 |
+
},
|
| 543 |
+
{
|
| 544 |
+
"child": "xgboost.skip_drop",
|
| 545 |
+
"parent": "learner",
|
| 546 |
+
"type": "EQ",
|
| 547 |
+
"value": "xgboost"
|
| 548 |
+
}
|
| 549 |
+
]
|
| 550 |
+
}
|
| 551 |
+
],
|
| 552 |
+
"forbiddens": [],
|
| 553 |
+
"python_module_version": "0.4.19",
|
| 554 |
+
"json_format_version": 0.2
|
| 555 |
+
}
|
yahpo/iaml_super/encoding.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"learner": {"#na#": 0, "glmnet": 1, "ranger": 2, "rpart": 3, "xgboost": 4}, "ranger.replace": {"#na#": 0, "FALSE": 1, "TRUE": 2}, "ranger.respect.unordered.factors": {"#na#": 0, "ignore": 1, "order": 2, "partition": 3}, "ranger.splitrule": {"#na#": 0, "extratrees": 1, "gini": 2}, "task_id": {"#na#": 0, "1067": 1, "1489": 2, "40981": 3, "41146": 4}, "xgboost.booster": {"#na#": 0, "dart": 1, "gblinear": 2, "gbtree": 3}}
|
yahpo/iaml_super/metadata.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{"metric_elapsed_time": "time", "metric_default": "val_accuracy", "resource_attr": "st_worker_iter"}
|
yahpo/iaml_super/model.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9318f8f985dcf068838b55bebe404f1d19b19717d2cc32cf0f6465cebc2eba46
|
| 3 |
+
size 75816168
|
yahpo/iaml_super/param_set.R
ADDED
|
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
search_space = ps(
|
| 2 |
+
learner = p_fct(levels = c("ranger", "glmnet", "xgboost", "rpart")),
|
| 3 |
+
ranger.num.trees = p_int(lower = 1L, upper = 2000L, depends = learner == "ranger"),
|
| 4 |
+
ranger.replace = p_lgl(depends = learner == "ranger"),
|
| 5 |
+
ranger.sample.fraction = p_dbl(lower = 0.1, upper = 1, depends = learner == "ranger"),
|
| 6 |
+
ranger.mtry.ratio = p_dbl(lower = 0, upper = 1, depends = learner == "ranger"),
|
| 7 |
+
ranger.respect.unordered.factors = p_fct(levels = c("ignore", "order", "partition"), depends = learner == "ranger"),
|
| 8 |
+
ranger.min.node.size = p_int(lower = 1L, upper = 100L, depends = learner == "ranger"),
|
| 9 |
+
ranger.splitrule = p_fct(levels = c("gini", "extratrees"), depends = learner == "ranger"),
|
| 10 |
+
ranger.num.random.splits = p_int(lower = 1L, upper = 100L, depends = ranger.splitrule == "extratrees" && learner == "ranger"),
|
| 11 |
+
|
| 12 |
+
glmnet.alpha = p_dbl(lower = 0, upper = 1, depends = learner == "glmnet"),
|
| 13 |
+
glmnet.s = p_dbl(lower = log(1e-4), upper = log(1000), tags = "log", trafo = function(x) exp(x), depends = learner == "glmnet"),
|
| 14 |
+
|
| 15 |
+
xgboost.booster = p_fct(levels = c("gblinear", "gbtree", "dart"), depends = learner == "xgboost"),
|
| 16 |
+
xgboost.nrounds = p_dbl(lower = 1, upper = log(2000), tags = c("int", "log"), trafo = function(x) as.integer(round(exp(x))), depends = learner == "xgboost"),
|
| 17 |
+
xgboost.eta = p_dbl(lower = log(1e-4), upper = 0, tags = "log", trafo = function(x) exp(x), depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
|
| 18 |
+
xgboost.gamma = p_dbl(lower = log(1e-4), upper = log(7), tags = "log", trafo = function(x) exp(x), depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
|
| 19 |
+
xgboost.lambda = p_dbl(lower = log(1e-4), upper = log(1000), tags = "log", trafo = function(x) exp(x), depends = learner == "xgboost"),
|
| 20 |
+
xgboost.alpha = p_dbl(lower = log(1e-4), upper = log(1000), tags = "log", trafo = function(x) exp(x), depends = learner == "xgboost"),
|
| 21 |
+
xgboost.subsample = p_dbl(lower = 0.1, upper = 1, depends = learner == "xgboost"),
|
| 22 |
+
xgboost.max_depth = p_int(lower = 1L, upper = 15L, depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
|
| 23 |
+
xgboost.min_child_weight = p_dbl(lower = 1, upper = log(150), tags = "log", trafo = function(x) exp(x), depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
|
| 24 |
+
xgboost.colsample_bytree = p_dbl(lower = 0.01, upper = 1, depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
|
| 25 |
+
xgboost.colsample_bylevel = p_dbl(lower = 0.01, upper = 1, depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
|
| 26 |
+
xgboost.rate_drop = p_dbl(lower = 0, upper = 1, depends = xgboost.booster == "dart" && learner == "xgboost"),
|
| 27 |
+
xgboost.skip_drop = p_dbl(lower = 0, upper = 1, depends = xgboost.booster == "dart" && learner == "xgboost"),
|
| 28 |
+
|
| 29 |
+
rpart.cp = p_dbl(lower = log(1e-4), upper = 0, tags = "log", trafo = function(x) exp(x), depends = learner == "rpart"),
|
| 30 |
+
rpart.maxdepth = p_int(lower = 1L, upper = 30L, depends = learner == "rpart"),
|
| 31 |
+
rpart.minbucket = p_int(lower = 1L, upper = 100L, depends = learner == "rpart"),
|
| 32 |
+
rpart.minsplit = p_int(lower = 1L, upper = 100L, depends = learner == "rpart"),
|
| 33 |
+
|
| 34 |
+
trainsize = p_dbl(lower = 0.03, upper = 1, tags = "budget"),
|
| 35 |
+
task_id = p_fct(levels = c("40981", "41146", "1489", "1067"), tags = "task_id")
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
domain = ps(
|
| 39 |
+
learner = p_fct(levels = c("ranger", "glmnet", "xgboost", "rpart")),
|
| 40 |
+
ranger.num.trees = p_int(lower = 1L, upper = 2000L, depends = learner == "ranger"),
|
| 41 |
+
ranger.replace = p_lgl(depends = learner == "ranger"),
|
| 42 |
+
ranger.sample.fraction = p_dbl(lower = 0.1, upper = 1, depends = learner == "ranger"),
|
| 43 |
+
ranger.mtry.ratio = p_dbl(lower = 0, upper = 1, depends = learner == "ranger"),
|
| 44 |
+
ranger.respect.unordered.factors = p_fct(levels = c("ignore", "order", "partition"), depends = learner == "ranger"),
|
| 45 |
+
ranger.min.node.size = p_int(lower = 1L, upper = 100L, depends = learner == "ranger"),
|
| 46 |
+
ranger.splitrule = p_fct(levels = c("gini", "extratrees"), depends = learner == "ranger"),
|
| 47 |
+
ranger.num.random.splits = p_int(lower = 1L, upper = 100L, depends = ranger.splitrule == "extratrees" && learner == "ranger"),
|
| 48 |
+
|
| 49 |
+
glmnet.alpha = p_dbl(lower = 0, upper = 1, depends = learner == "glmnet"),
|
| 50 |
+
glmnet.s = p_dbl(lower = 1e-4, upper = 1000, depends = learner == "glmnet"),
|
| 51 |
+
|
| 52 |
+
xgboost.booster = p_fct(levels = c("gblinear", "gbtree", "dart"), depends = learner == "xgboost"),
|
| 53 |
+
xgboost.nrounds = p_int(lower = 3, upper = 2000, depends = learner == "xgboost"),
|
| 54 |
+
xgboost.eta = p_dbl(lower = 1e-4, upper = 1, depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
|
| 55 |
+
xgboost.gamma = p_dbl(lower = 1e-4, upper = 7, depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
|
| 56 |
+
xgboost.lambda = p_dbl(lower = 1e-4, upper = 1000, depends = learner == "xgboost"),
|
| 57 |
+
xgboost.alpha = p_dbl(lower = 1e-4, upper = 1000, depends = learner == "xgboost"),
|
| 58 |
+
xgboost.subsample = p_dbl(lower = 0.1, upper = 1, depends = learner == "xgboost"),
|
| 59 |
+
xgboost.max_depth = p_int(lower = 1L, upper = 15L, depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
|
| 60 |
+
xgboost.min_child_weight = p_dbl(lower = exp(1), upper = 150, depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
|
| 61 |
+
xgboost.colsample_bytree = p_dbl(lower = 0.01, upper = 1, depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
|
| 62 |
+
xgboost.colsample_bylevel = p_dbl(lower = 0.01, upper = 1, depends = xgboost.booster %in% c("dart", "gbtree") && learner == "xgboost"),
|
| 63 |
+
xgboost.rate_drop = p_dbl(lower = 0, upper = 1, depends = xgboost.booster == "dart" && learner == "xgboost"),
|
| 64 |
+
xgboost.skip_drop = p_dbl(lower = 0, upper = 1, depends = xgboost.booster == "dart" && learner == "xgboost"),
|
| 65 |
+
|
| 66 |
+
rpart.cp = p_dbl(lower = 1e-4, upper = 1, depends = learner == "rpart"),
|
| 67 |
+
rpart.maxdepth = p_int(lower = 1L, upper = 30L, depends = learner == "rpart"),
|
| 68 |
+
rpart.minbucket = p_int(lower = 1L, upper = 100L, depends = learner == "rpart"),
|
| 69 |
+
rpart.minsplit = p_int(lower = 1L, upper = 100L, depends = learner == "rpart"),
|
| 70 |
+
|
| 71 |
+
trainsize = p_dbl(lower = 0.03, upper = 1, tags = "budget"),
|
| 72 |
+
task_id = p_fct(levels = c("40981", "41146", "1489", "1067"), tags = "task_id")
|
| 73 |
+
)
|
| 74 |
+
|
| 75 |
+
codomain = ps(
|
| 76 |
+
mmce = p_dbl(lower = 0, upper = 1, tags = "minimize"),
|
| 77 |
+
f1 = p_dbl(lower = 0, upper = 1, tags = "maximize"),
|
| 78 |
+
auc = p_dbl(lower = 0, upper = 1, tags = "maximize"),
|
| 79 |
+
logloss = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
|
| 80 |
+
ramtrain = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
|
| 81 |
+
rammodel = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
|
| 82 |
+
rampredict = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
|
| 83 |
+
timetrain = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
|
| 84 |
+
timepredict = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
|
| 85 |
+
mec = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
|
| 86 |
+
ias = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
|
| 87 |
+
nf = p_dbl(lower = 0, upper = Inf, tags = "minimize")
|
| 88 |
+
)
|