Delete yahpo-iaml_xgboost
Browse files
yahpo-iaml_xgboost/best_params_resnet.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"d": 384, "d_hidden_factor": 2.7930060842224904, "hidden_dropout": 0.09343650341288146, "lr": 0.0007388150356328408, "mixup": false, "n_layers": 6, "opt_tfms_alpha": true, "opt_tfms_auc": true, "opt_tfms_colsample_bylevel": true, "opt_tfms_colsample_bytree": true, "opt_tfms_eta": false, "opt_tfms_f1": false, "opt_tfms_gamma": false, "opt_tfms_ias": false, "opt_tfms_lambda": true, "opt_tfms_logloss": false, "opt_tfms_max_depth": false, "opt_tfms_mec": false, "opt_tfms_min_child_weight": true, "opt_tfms_mmce": true, "opt_tfms_nrounds": true, "opt_tfms_rammodel": false, "opt_tfms_rampredict": true, "opt_tfms_ramtrain": true, "opt_tfms_rate_drop": false, "opt_tfms_skip_drop": true, "opt_tfms_subsample": true, "opt_tfms_timepredict": false, "opt_tfms_timetrain": false, "opt_tfms_trainsize": false, "tfms_alpha": "tlog", "tfms_auc": "tnexp", "tfms_colsample_bylevel": "tnexp", "tfms_colsample_bytree": "tnexp", "tfms_lambda": "tlog", "tfms_min_child_weight": "tnexp", "tfms_mmce": "tlog", "tfms_nrounds": "tlog", "tfms_rampredict": "tnexp", "tfms_ramtrain": "tnexp", "tfms_skip_drop": "tnexp", "tfms_subsample": "tlog", "use_residual_dropout": false}
|
|
|
|
yahpo-iaml_xgboost/config_space.json
DELETED
@@ -1,202 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"hyperparameters": [
|
3 |
-
{
|
4 |
-
"name": "alpha",
|
5 |
-
"type": "uniform_float",
|
6 |
-
"log": true,
|
7 |
-
"lower": 0.00010000000000000009,
|
8 |
-
"upper": 999.9999999999998,
|
9 |
-
"default": 0.316227766
|
10 |
-
},
|
11 |
-
{
|
12 |
-
"name": "booster",
|
13 |
-
"type": "categorical",
|
14 |
-
"choices": [
|
15 |
-
"gblinear",
|
16 |
-
"gbtree",
|
17 |
-
"dart"
|
18 |
-
],
|
19 |
-
"default": "gblinear",
|
20 |
-
"probabilities": null
|
21 |
-
},
|
22 |
-
{
|
23 |
-
"name": "lambda",
|
24 |
-
"type": "uniform_float",
|
25 |
-
"log": true,
|
26 |
-
"lower": 0.00010000000000000009,
|
27 |
-
"upper": 999.9999999999998,
|
28 |
-
"default": 0.316227766
|
29 |
-
},
|
30 |
-
{
|
31 |
-
"name": "nrounds",
|
32 |
-
"type": "uniform_int",
|
33 |
-
"log": true,
|
34 |
-
"lower": 3,
|
35 |
-
"upper": 2000,
|
36 |
-
"default": 77
|
37 |
-
},
|
38 |
-
{
|
39 |
-
"name": "subsample",
|
40 |
-
"type": "uniform_float",
|
41 |
-
"log": false,
|
42 |
-
"lower": 0.1,
|
43 |
-
"upper": 1.0,
|
44 |
-
"default": 0.55
|
45 |
-
},
|
46 |
-
{
|
47 |
-
"name": "task_id",
|
48 |
-
"type": "categorical",
|
49 |
-
"choices": [
|
50 |
-
"40981",
|
51 |
-
"41146",
|
52 |
-
"1489",
|
53 |
-
"1067"
|
54 |
-
],
|
55 |
-
"default": "40981",
|
56 |
-
"probabilities": null
|
57 |
-
},
|
58 |
-
{
|
59 |
-
"name": "trainsize",
|
60 |
-
"type": "uniform_float",
|
61 |
-
"log": false,
|
62 |
-
"lower": 0.03,
|
63 |
-
"upper": 1.0,
|
64 |
-
"default": 0.525
|
65 |
-
},
|
66 |
-
{
|
67 |
-
"name": "colsample_bylevel",
|
68 |
-
"type": "uniform_float",
|
69 |
-
"log": false,
|
70 |
-
"lower": 0.01,
|
71 |
-
"upper": 1.0,
|
72 |
-
"default": 0.505
|
73 |
-
},
|
74 |
-
{
|
75 |
-
"name": "colsample_bytree",
|
76 |
-
"type": "uniform_float",
|
77 |
-
"log": false,
|
78 |
-
"lower": 0.01,
|
79 |
-
"upper": 1.0,
|
80 |
-
"default": 0.505
|
81 |
-
},
|
82 |
-
{
|
83 |
-
"name": "eta",
|
84 |
-
"type": "uniform_float",
|
85 |
-
"log": true,
|
86 |
-
"lower": 0.00010000000000000009,
|
87 |
-
"upper": 1.0,
|
88 |
-
"default": 0.01
|
89 |
-
},
|
90 |
-
{
|
91 |
-
"name": "gamma",
|
92 |
-
"type": "uniform_float",
|
93 |
-
"log": true,
|
94 |
-
"lower": 0.00010000000000000009,
|
95 |
-
"upper": 6.999999999999999,
|
96 |
-
"default": 0.0264575131
|
97 |
-
},
|
98 |
-
{
|
99 |
-
"name": "max_depth",
|
100 |
-
"type": "uniform_int",
|
101 |
-
"log": false,
|
102 |
-
"lower": 1,
|
103 |
-
"upper": 15,
|
104 |
-
"default": 8
|
105 |
-
},
|
106 |
-
{
|
107 |
-
"name": "min_child_weight",
|
108 |
-
"type": "uniform_float",
|
109 |
-
"log": true,
|
110 |
-
"lower": 2.718281828459045,
|
111 |
-
"upper": 149.99999999999997,
|
112 |
-
"default": 20.1926292064
|
113 |
-
},
|
114 |
-
{
|
115 |
-
"name": "rate_drop",
|
116 |
-
"type": "uniform_float",
|
117 |
-
"log": false,
|
118 |
-
"lower": 0.0,
|
119 |
-
"upper": 1.0,
|
120 |
-
"default": 0.5
|
121 |
-
},
|
122 |
-
{
|
123 |
-
"name": "skip_drop",
|
124 |
-
"type": "uniform_float",
|
125 |
-
"log": false,
|
126 |
-
"lower": 0.0,
|
127 |
-
"upper": 1.0,
|
128 |
-
"default": 0.5
|
129 |
-
}
|
130 |
-
],
|
131 |
-
"conditions": [
|
132 |
-
{
|
133 |
-
"child": "colsample_bylevel",
|
134 |
-
"parent": "booster",
|
135 |
-
"type": "IN",
|
136 |
-
"values": [
|
137 |
-
"dart",
|
138 |
-
"gbtree"
|
139 |
-
]
|
140 |
-
},
|
141 |
-
{
|
142 |
-
"child": "colsample_bytree",
|
143 |
-
"parent": "booster",
|
144 |
-
"type": "IN",
|
145 |
-
"values": [
|
146 |
-
"dart",
|
147 |
-
"gbtree"
|
148 |
-
]
|
149 |
-
},
|
150 |
-
{
|
151 |
-
"child": "eta",
|
152 |
-
"parent": "booster",
|
153 |
-
"type": "IN",
|
154 |
-
"values": [
|
155 |
-
"dart",
|
156 |
-
"gbtree"
|
157 |
-
]
|
158 |
-
},
|
159 |
-
{
|
160 |
-
"child": "gamma",
|
161 |
-
"parent": "booster",
|
162 |
-
"type": "IN",
|
163 |
-
"values": [
|
164 |
-
"dart",
|
165 |
-
"gbtree"
|
166 |
-
]
|
167 |
-
},
|
168 |
-
{
|
169 |
-
"child": "max_depth",
|
170 |
-
"parent": "booster",
|
171 |
-
"type": "IN",
|
172 |
-
"values": [
|
173 |
-
"dart",
|
174 |
-
"gbtree"
|
175 |
-
]
|
176 |
-
},
|
177 |
-
{
|
178 |
-
"child": "min_child_weight",
|
179 |
-
"parent": "booster",
|
180 |
-
"type": "IN",
|
181 |
-
"values": [
|
182 |
-
"dart",
|
183 |
-
"gbtree"
|
184 |
-
]
|
185 |
-
},
|
186 |
-
{
|
187 |
-
"child": "rate_drop",
|
188 |
-
"parent": "booster",
|
189 |
-
"type": "EQ",
|
190 |
-
"value": "dart"
|
191 |
-
},
|
192 |
-
{
|
193 |
-
"child": "skip_drop",
|
194 |
-
"parent": "booster",
|
195 |
-
"type": "EQ",
|
196 |
-
"value": "dart"
|
197 |
-
}
|
198 |
-
],
|
199 |
-
"forbiddens": [],
|
200 |
-
"python_module_version": "0.4.19",
|
201 |
-
"json_format_version": 0.2
|
202 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
yahpo-iaml_xgboost/encoding.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"booster": {"#na#": 0, "dart": 1, "gblinear": 2, "gbtree": 3}, "task_id": {"#na#": 0, "1067": 1, "1489": 2, "40981": 3, "41146": 4}}
|
|
|
|
yahpo-iaml_xgboost/metadata.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"metric_elapsed_time": "time", "metric_default": "val_accuracy", "resource_attr": "st_worker_iter"}
|
|
|
|
yahpo-iaml_xgboost/model.onnx
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:dd51307d61b7cd746f5cee82b174aeecf05f9459da07e36ca8bf267d8d2d4d94
|
3 |
-
size 29827930
|
|
|
|
|
|
|
|
yahpo-iaml_xgboost/param_set.R
DELETED
@@ -1,50 +0,0 @@
|
|
1 |
-
search_space = ps(
|
2 |
-
booster = p_fct(levels = c("gblinear", "gbtree", "dart")),
|
3 |
-
nrounds = p_dbl(lower = 1, upper = log(2000), tags = c("int", "log"), trafo = function(x) as.integer(round(exp(x)))),
|
4 |
-
eta = p_dbl(lower = log(1e-4), upper = log(1), tags = "log", trafo = function(x) exp(x), depends = booster %in% c("dart", "gbtree")),
|
5 |
-
gamma = p_dbl(lower = log(1e-4), upper = log(7), tags = "log", trafo = function(x) exp(x), depends = booster %in% c("dart", "gbtree")),
|
6 |
-
lambda = p_dbl(lower = log(1e-4), upper = log(1000), tags = "log", trafo = function(x) exp(x)),
|
7 |
-
alpha = p_dbl(lower = log(1e-4), upper = log(1000), tags = "log", trafo = function(x) exp(x)),
|
8 |
-
subsample = p_dbl(lower = 0.1, upper = 1),
|
9 |
-
max_depth = p_int(lower = 1L, upper = 15L, depends = booster %in% c("dart", "gbtree")),
|
10 |
-
min_child_weight = p_dbl(lower = 1, upper = log(150), tags = "log", trafo = function(x) exp(x), depends = booster %in% c("dart", "gbtree")),
|
11 |
-
colsample_bytree = p_dbl(lower = 0.01, upper = 1, depends = booster %in% c("dart", "gbtree")),
|
12 |
-
colsample_bylevel = p_dbl(lower = 0.01, upper = 1, depends = booster %in% c("dart", "gbtree")),
|
13 |
-
rate_drop = p_dbl(lower = 0, upper = 1, depends = booster == "dart"),
|
14 |
-
skip_drop = p_dbl(lower = 0, upper = 1, depends = booster == "dart"),
|
15 |
-
trainsize = p_dbl(lower = 0.03, upper = 1, tags = "budget"),
|
16 |
-
task_id = p_fct(levels = c("40981", "41146", "1489", "1067"), tags = "task_id")
|
17 |
-
)
|
18 |
-
|
19 |
-
domain = ps(
|
20 |
-
booster = p_fct(levels = c("gblinear", "gbtree", "dart")),
|
21 |
-
nrounds = p_int(lower = 3, upper = 2000),
|
22 |
-
eta = p_dbl(lower = 1e-4, upper = 1, depends = booster %in% c("dart", "gbtree")),
|
23 |
-
gamma = p_dbl(lower = 1e-4, upper = 7, depends = booster %in% c("dart", "gbtree")),
|
24 |
-
lambda = p_dbl(lower = 1e-4, upper = 1000),
|
25 |
-
alpha = p_dbl(lower = 1e-4, upper = 1000),
|
26 |
-
subsample = p_dbl(lower = 0.1, upper = 1),
|
27 |
-
max_depth = p_int(lower = 1L, upper = 15L, depends = booster %in% c("dart", "gbtree")),
|
28 |
-
min_child_weight = p_dbl(lower = exp(1), upper = 150, depends = booster %in% c("dart", "gbtree")),
|
29 |
-
colsample_bytree = p_dbl(lower = 0.01, upper = 1, depends = booster %in% c("dart", "gbtree")),
|
30 |
-
colsample_bylevel = p_dbl(lower = 0.01, upper = 1, depends = booster %in% c("dart", "gbtree")),
|
31 |
-
rate_drop = p_dbl(lower = 0, upper = 1, depends = booster == "dart"),
|
32 |
-
skip_drop = p_dbl(lower = 0, upper = 1, depends = booster == "dart"),
|
33 |
-
trainsize = p_dbl(lower = 0.03, upper = 1, tags = "budget"),
|
34 |
-
task_id = p_fct(levels = c("40981", "41146", "1489", "1067"), tags = "task_id")
|
35 |
-
)
|
36 |
-
|
37 |
-
codomain = ps(
|
38 |
-
mmce = p_dbl(lower = 0, upper = 1, tags = "minimize"),
|
39 |
-
f1 = p_dbl(lower = 0, upper = 1, tags = "maximize"),
|
40 |
-
auc = p_dbl(lower = 0, upper = 1, tags = "maximize"),
|
41 |
-
logloss = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
|
42 |
-
ramtrain = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
|
43 |
-
rammodel = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
|
44 |
-
rampredict = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
|
45 |
-
timetrain = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
|
46 |
-
timepredict = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
|
47 |
-
mec = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
|
48 |
-
ias = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
|
49 |
-
nf = p_dbl(lower = 0, upper = Inf, tags = "minimize")
|
50 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|