geoalgo commited on
Commit
8f232b7
·
verified ·
1 Parent(s): 5e36774

Delete yahpo-iaml_xgboost

Browse files
yahpo-iaml_xgboost/best_params_resnet.json DELETED
@@ -1 +0,0 @@
1
- {"d": 384, "d_hidden_factor": 2.7930060842224904, "hidden_dropout": 0.09343650341288146, "lr": 0.0007388150356328408, "mixup": false, "n_layers": 6, "opt_tfms_alpha": true, "opt_tfms_auc": true, "opt_tfms_colsample_bylevel": true, "opt_tfms_colsample_bytree": true, "opt_tfms_eta": false, "opt_tfms_f1": false, "opt_tfms_gamma": false, "opt_tfms_ias": false, "opt_tfms_lambda": true, "opt_tfms_logloss": false, "opt_tfms_max_depth": false, "opt_tfms_mec": false, "opt_tfms_min_child_weight": true, "opt_tfms_mmce": true, "opt_tfms_nrounds": true, "opt_tfms_rammodel": false, "opt_tfms_rampredict": true, "opt_tfms_ramtrain": true, "opt_tfms_rate_drop": false, "opt_tfms_skip_drop": true, "opt_tfms_subsample": true, "opt_tfms_timepredict": false, "opt_tfms_timetrain": false, "opt_tfms_trainsize": false, "tfms_alpha": "tlog", "tfms_auc": "tnexp", "tfms_colsample_bylevel": "tnexp", "tfms_colsample_bytree": "tnexp", "tfms_lambda": "tlog", "tfms_min_child_weight": "tnexp", "tfms_mmce": "tlog", "tfms_nrounds": "tlog", "tfms_rampredict": "tnexp", "tfms_ramtrain": "tnexp", "tfms_skip_drop": "tnexp", "tfms_subsample": "tlog", "use_residual_dropout": false}
 
 
yahpo-iaml_xgboost/config_space.json DELETED
@@ -1,202 +0,0 @@
1
- {
2
- "hyperparameters": [
3
- {
4
- "name": "alpha",
5
- "type": "uniform_float",
6
- "log": true,
7
- "lower": 0.00010000000000000009,
8
- "upper": 999.9999999999998,
9
- "default": 0.316227766
10
- },
11
- {
12
- "name": "booster",
13
- "type": "categorical",
14
- "choices": [
15
- "gblinear",
16
- "gbtree",
17
- "dart"
18
- ],
19
- "default": "gblinear",
20
- "probabilities": null
21
- },
22
- {
23
- "name": "lambda",
24
- "type": "uniform_float",
25
- "log": true,
26
- "lower": 0.00010000000000000009,
27
- "upper": 999.9999999999998,
28
- "default": 0.316227766
29
- },
30
- {
31
- "name": "nrounds",
32
- "type": "uniform_int",
33
- "log": true,
34
- "lower": 3,
35
- "upper": 2000,
36
- "default": 77
37
- },
38
- {
39
- "name": "subsample",
40
- "type": "uniform_float",
41
- "log": false,
42
- "lower": 0.1,
43
- "upper": 1.0,
44
- "default": 0.55
45
- },
46
- {
47
- "name": "task_id",
48
- "type": "categorical",
49
- "choices": [
50
- "40981",
51
- "41146",
52
- "1489",
53
- "1067"
54
- ],
55
- "default": "40981",
56
- "probabilities": null
57
- },
58
- {
59
- "name": "trainsize",
60
- "type": "uniform_float",
61
- "log": false,
62
- "lower": 0.03,
63
- "upper": 1.0,
64
- "default": 0.525
65
- },
66
- {
67
- "name": "colsample_bylevel",
68
- "type": "uniform_float",
69
- "log": false,
70
- "lower": 0.01,
71
- "upper": 1.0,
72
- "default": 0.505
73
- },
74
- {
75
- "name": "colsample_bytree",
76
- "type": "uniform_float",
77
- "log": false,
78
- "lower": 0.01,
79
- "upper": 1.0,
80
- "default": 0.505
81
- },
82
- {
83
- "name": "eta",
84
- "type": "uniform_float",
85
- "log": true,
86
- "lower": 0.00010000000000000009,
87
- "upper": 1.0,
88
- "default": 0.01
89
- },
90
- {
91
- "name": "gamma",
92
- "type": "uniform_float",
93
- "log": true,
94
- "lower": 0.00010000000000000009,
95
- "upper": 6.999999999999999,
96
- "default": 0.0264575131
97
- },
98
- {
99
- "name": "max_depth",
100
- "type": "uniform_int",
101
- "log": false,
102
- "lower": 1,
103
- "upper": 15,
104
- "default": 8
105
- },
106
- {
107
- "name": "min_child_weight",
108
- "type": "uniform_float",
109
- "log": true,
110
- "lower": 2.718281828459045,
111
- "upper": 149.99999999999997,
112
- "default": 20.1926292064
113
- },
114
- {
115
- "name": "rate_drop",
116
- "type": "uniform_float",
117
- "log": false,
118
- "lower": 0.0,
119
- "upper": 1.0,
120
- "default": 0.5
121
- },
122
- {
123
- "name": "skip_drop",
124
- "type": "uniform_float",
125
- "log": false,
126
- "lower": 0.0,
127
- "upper": 1.0,
128
- "default": 0.5
129
- }
130
- ],
131
- "conditions": [
132
- {
133
- "child": "colsample_bylevel",
134
- "parent": "booster",
135
- "type": "IN",
136
- "values": [
137
- "dart",
138
- "gbtree"
139
- ]
140
- },
141
- {
142
- "child": "colsample_bytree",
143
- "parent": "booster",
144
- "type": "IN",
145
- "values": [
146
- "dart",
147
- "gbtree"
148
- ]
149
- },
150
- {
151
- "child": "eta",
152
- "parent": "booster",
153
- "type": "IN",
154
- "values": [
155
- "dart",
156
- "gbtree"
157
- ]
158
- },
159
- {
160
- "child": "gamma",
161
- "parent": "booster",
162
- "type": "IN",
163
- "values": [
164
- "dart",
165
- "gbtree"
166
- ]
167
- },
168
- {
169
- "child": "max_depth",
170
- "parent": "booster",
171
- "type": "IN",
172
- "values": [
173
- "dart",
174
- "gbtree"
175
- ]
176
- },
177
- {
178
- "child": "min_child_weight",
179
- "parent": "booster",
180
- "type": "IN",
181
- "values": [
182
- "dart",
183
- "gbtree"
184
- ]
185
- },
186
- {
187
- "child": "rate_drop",
188
- "parent": "booster",
189
- "type": "EQ",
190
- "value": "dart"
191
- },
192
- {
193
- "child": "skip_drop",
194
- "parent": "booster",
195
- "type": "EQ",
196
- "value": "dart"
197
- }
198
- ],
199
- "forbiddens": [],
200
- "python_module_version": "0.4.19",
201
- "json_format_version": 0.2
202
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
yahpo-iaml_xgboost/encoding.json DELETED
@@ -1 +0,0 @@
1
- {"booster": {"#na#": 0, "dart": 1, "gblinear": 2, "gbtree": 3}, "task_id": {"#na#": 0, "1067": 1, "1489": 2, "40981": 3, "41146": 4}}
 
 
yahpo-iaml_xgboost/metadata.json DELETED
@@ -1 +0,0 @@
1
- {"metric_elapsed_time": "time", "metric_default": "val_accuracy", "resource_attr": "st_worker_iter"}
 
 
yahpo-iaml_xgboost/model.onnx DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:dd51307d61b7cd746f5cee82b174aeecf05f9459da07e36ca8bf267d8d2d4d94
3
- size 29827930
 
 
 
 
yahpo-iaml_xgboost/param_set.R DELETED
@@ -1,50 +0,0 @@
1
- search_space = ps(
2
- booster = p_fct(levels = c("gblinear", "gbtree", "dart")),
3
- nrounds = p_dbl(lower = 1, upper = log(2000), tags = c("int", "log"), trafo = function(x) as.integer(round(exp(x)))),
4
- eta = p_dbl(lower = log(1e-4), upper = log(1), tags = "log", trafo = function(x) exp(x), depends = booster %in% c("dart", "gbtree")),
5
- gamma = p_dbl(lower = log(1e-4), upper = log(7), tags = "log", trafo = function(x) exp(x), depends = booster %in% c("dart", "gbtree")),
6
- lambda = p_dbl(lower = log(1e-4), upper = log(1000), tags = "log", trafo = function(x) exp(x)),
7
- alpha = p_dbl(lower = log(1e-4), upper = log(1000), tags = "log", trafo = function(x) exp(x)),
8
- subsample = p_dbl(lower = 0.1, upper = 1),
9
- max_depth = p_int(lower = 1L, upper = 15L, depends = booster %in% c("dart", "gbtree")),
10
- min_child_weight = p_dbl(lower = 1, upper = log(150), tags = "log", trafo = function(x) exp(x), depends = booster %in% c("dart", "gbtree")),
11
- colsample_bytree = p_dbl(lower = 0.01, upper = 1, depends = booster %in% c("dart", "gbtree")),
12
- colsample_bylevel = p_dbl(lower = 0.01, upper = 1, depends = booster %in% c("dart", "gbtree")),
13
- rate_drop = p_dbl(lower = 0, upper = 1, depends = booster == "dart"),
14
- skip_drop = p_dbl(lower = 0, upper = 1, depends = booster == "dart"),
15
- trainsize = p_dbl(lower = 0.03, upper = 1, tags = "budget"),
16
- task_id = p_fct(levels = c("40981", "41146", "1489", "1067"), tags = "task_id")
17
- )
18
-
19
- domain = ps(
20
- booster = p_fct(levels = c("gblinear", "gbtree", "dart")),
21
- nrounds = p_int(lower = 3, upper = 2000),
22
- eta = p_dbl(lower = 1e-4, upper = 1, depends = booster %in% c("dart", "gbtree")),
23
- gamma = p_dbl(lower = 1e-4, upper = 7, depends = booster %in% c("dart", "gbtree")),
24
- lambda = p_dbl(lower = 1e-4, upper = 1000),
25
- alpha = p_dbl(lower = 1e-4, upper = 1000),
26
- subsample = p_dbl(lower = 0.1, upper = 1),
27
- max_depth = p_int(lower = 1L, upper = 15L, depends = booster %in% c("dart", "gbtree")),
28
- min_child_weight = p_dbl(lower = exp(1), upper = 150, depends = booster %in% c("dart", "gbtree")),
29
- colsample_bytree = p_dbl(lower = 0.01, upper = 1, depends = booster %in% c("dart", "gbtree")),
30
- colsample_bylevel = p_dbl(lower = 0.01, upper = 1, depends = booster %in% c("dart", "gbtree")),
31
- rate_drop = p_dbl(lower = 0, upper = 1, depends = booster == "dart"),
32
- skip_drop = p_dbl(lower = 0, upper = 1, depends = booster == "dart"),
33
- trainsize = p_dbl(lower = 0.03, upper = 1, tags = "budget"),
34
- task_id = p_fct(levels = c("40981", "41146", "1489", "1067"), tags = "task_id")
35
- )
36
-
37
- codomain = ps(
38
- mmce = p_dbl(lower = 0, upper = 1, tags = "minimize"),
39
- f1 = p_dbl(lower = 0, upper = 1, tags = "maximize"),
40
- auc = p_dbl(lower = 0, upper = 1, tags = "maximize"),
41
- logloss = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
42
- ramtrain = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
43
- rammodel = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
44
- rampredict = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
45
- timetrain = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
46
- timepredict = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
47
- mec = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
48
- ias = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
49
- nf = p_dbl(lower = 0, upper = Inf, tags = "minimize")
50
- )