Upload blackbox yahpo-iaml_ranger
Browse files
    	
        yahpo/iaml_ranger/best_params_resnet.json
    ADDED
    
    | @@ -0,0 +1 @@ | |
|  | 
|  | |
| 1 | 
            +
            {"d": 512, "d_hidden_factor": 2.2494375076022086, "hidden_dropout": 0.03397549242844672, "lr": 0.0005620479756574539, "mixup": false, "n_layers": 4, "opt_tfms_auc": false, "opt_tfms_f1": false, "opt_tfms_ias": true, "opt_tfms_logloss": false, "opt_tfms_mec": true, "opt_tfms_min.node.size": false, "opt_tfms_mmce": true, "opt_tfms_mtry.ratio": false, "opt_tfms_num.random.splits": false, "opt_tfms_num.trees": true, "opt_tfms_rammodel": true, "opt_tfms_rampredict": true, "opt_tfms_ramtrain": false, "opt_tfms_sample.fraction": true, "opt_tfms_timepredict": true, "opt_tfms_timetrain": false, "opt_tfms_trainsize": false, "tfms_ias": "tlog", "tfms_mec": "tlog", "tfms_mmce": "tnexp", "tfms_num.trees": "tlog", "tfms_rammodel": "tlog", "tfms_rampredict": "tlog", "tfms_sample.fraction": "tlog", "tfms_timepredict": "tlog", "use_residual_dropout": false}
         | 
    	
        yahpo/iaml_ranger/config_space.json
    ADDED
    
    | @@ -0,0 +1,106 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "hyperparameters": [
         | 
| 3 | 
            +
                {
         | 
| 4 | 
            +
                  "name": "min.node.size",
         | 
| 5 | 
            +
                  "type": "uniform_int",
         | 
| 6 | 
            +
                  "log": false,
         | 
| 7 | 
            +
                  "lower": 1,
         | 
| 8 | 
            +
                  "upper": 100,
         | 
| 9 | 
            +
                  "default": 50
         | 
| 10 | 
            +
                },
         | 
| 11 | 
            +
                {
         | 
| 12 | 
            +
                  "name": "mtry.ratio",
         | 
| 13 | 
            +
                  "type": "uniform_float",
         | 
| 14 | 
            +
                  "log": false,
         | 
| 15 | 
            +
                  "lower": 0.0,
         | 
| 16 | 
            +
                  "upper": 1.0,
         | 
| 17 | 
            +
                  "default": 0.5
         | 
| 18 | 
            +
                },
         | 
| 19 | 
            +
                {
         | 
| 20 | 
            +
                  "name": "num.trees",
         | 
| 21 | 
            +
                  "type": "uniform_int",
         | 
| 22 | 
            +
                  "log": false,
         | 
| 23 | 
            +
                  "lower": 1,
         | 
| 24 | 
            +
                  "upper": 2000,
         | 
| 25 | 
            +
                  "default": 1000
         | 
| 26 | 
            +
                },
         | 
| 27 | 
            +
                {
         | 
| 28 | 
            +
                  "name": "replace",
         | 
| 29 | 
            +
                  "type": "categorical",
         | 
| 30 | 
            +
                  "choices": [
         | 
| 31 | 
            +
                    "TRUE",
         | 
| 32 | 
            +
                    "FALSE"
         | 
| 33 | 
            +
                  ],
         | 
| 34 | 
            +
                  "default": "TRUE",
         | 
| 35 | 
            +
                  "probabilities": null
         | 
| 36 | 
            +
                },
         | 
| 37 | 
            +
                {
         | 
| 38 | 
            +
                  "name": "respect.unordered.factors",
         | 
| 39 | 
            +
                  "type": "categorical",
         | 
| 40 | 
            +
                  "choices": [
         | 
| 41 | 
            +
                    "ignore",
         | 
| 42 | 
            +
                    "order",
         | 
| 43 | 
            +
                    "partition"
         | 
| 44 | 
            +
                  ],
         | 
| 45 | 
            +
                  "default": "ignore",
         | 
| 46 | 
            +
                  "probabilities": null
         | 
| 47 | 
            +
                },
         | 
| 48 | 
            +
                {
         | 
| 49 | 
            +
                  "name": "sample.fraction",
         | 
| 50 | 
            +
                  "type": "uniform_float",
         | 
| 51 | 
            +
                  "log": false,
         | 
| 52 | 
            +
                  "lower": 0.1,
         | 
| 53 | 
            +
                  "upper": 1.0,
         | 
| 54 | 
            +
                  "default": 0.55
         | 
| 55 | 
            +
                },
         | 
| 56 | 
            +
                {
         | 
| 57 | 
            +
                  "name": "splitrule",
         | 
| 58 | 
            +
                  "type": "categorical",
         | 
| 59 | 
            +
                  "choices": [
         | 
| 60 | 
            +
                    "gini",
         | 
| 61 | 
            +
                    "extratrees"
         | 
| 62 | 
            +
                  ],
         | 
| 63 | 
            +
                  "default": "gini",
         | 
| 64 | 
            +
                  "probabilities": null
         | 
| 65 | 
            +
                },
         | 
| 66 | 
            +
                {
         | 
| 67 | 
            +
                  "name": "task_id",
         | 
| 68 | 
            +
                  "type": "categorical",
         | 
| 69 | 
            +
                  "choices": [
         | 
| 70 | 
            +
                    "40981",
         | 
| 71 | 
            +
                    "41146",
         | 
| 72 | 
            +
                    "1489",
         | 
| 73 | 
            +
                    "1067"
         | 
| 74 | 
            +
                  ],
         | 
| 75 | 
            +
                  "default": "40981",
         | 
| 76 | 
            +
                  "probabilities": null
         | 
| 77 | 
            +
                },
         | 
| 78 | 
            +
                {
         | 
| 79 | 
            +
                  "name": "trainsize",
         | 
| 80 | 
            +
                  "type": "uniform_float",
         | 
| 81 | 
            +
                  "log": false,
         | 
| 82 | 
            +
                  "lower": 0.03,
         | 
| 83 | 
            +
                  "upper": 1.0,
         | 
| 84 | 
            +
                  "default": 0.525
         | 
| 85 | 
            +
                },
         | 
| 86 | 
            +
                {
         | 
| 87 | 
            +
                  "name": "num.random.splits",
         | 
| 88 | 
            +
                  "type": "uniform_int",
         | 
| 89 | 
            +
                  "log": false,
         | 
| 90 | 
            +
                  "lower": 1,
         | 
| 91 | 
            +
                  "upper": 100,
         | 
| 92 | 
            +
                  "default": 50
         | 
| 93 | 
            +
                }
         | 
| 94 | 
            +
              ],
         | 
| 95 | 
            +
              "conditions": [
         | 
| 96 | 
            +
                {
         | 
| 97 | 
            +
                  "child": "num.random.splits",
         | 
| 98 | 
            +
                  "parent": "splitrule",
         | 
| 99 | 
            +
                  "type": "EQ",
         | 
| 100 | 
            +
                  "value": "extratrees"
         | 
| 101 | 
            +
                }
         | 
| 102 | 
            +
              ],
         | 
| 103 | 
            +
              "forbiddens": [],
         | 
| 104 | 
            +
              "python_module_version": "0.4.19",
         | 
| 105 | 
            +
              "json_format_version": 0.2
         | 
| 106 | 
            +
            }
         | 
    	
        yahpo/iaml_ranger/encoding.json
    ADDED
    
    | @@ -0,0 +1 @@ | |
|  | 
|  | |
| 1 | 
            +
            {"replace": {"#na#": 0, "FALSE": 1, "TRUE": 2}, "respect.unordered.factors": {"#na#": 0, "ignore": 1, "order": 2, "partition": 3}, "splitrule": {"#na#": 0, "extratrees": 1, "gini": 2}, "task_id": {"#na#": 0, "1067": 1, "1489": 2, "40981": 3, "41146": 4}}
         | 
    	
        yahpo/iaml_ranger/metadata.json
    ADDED
    
    | @@ -0,0 +1 @@ | |
|  | 
|  | |
| 1 | 
            +
            {"metric_elapsed_time": "time", "metric_default": "val_accuracy", "resource_attr": "st_worker_iter"}
         | 
    	
        yahpo/iaml_ranger/model.onnx
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:1ed2779d20f0938535512008779f28ef350dc479219beaab660d658e2e730e6c
         | 
| 3 | 
            +
            size 28482414
         | 
    	
        yahpo/iaml_ranger/param_set.R
    ADDED
    
    | @@ -0,0 +1,40 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            search_space = ps(
         | 
| 2 | 
            +
              num.trees = p_int(lower = 1L, upper = 2000L),
         | 
| 3 | 
            +
              replace = p_lgl(),
         | 
| 4 | 
            +
              sample.fraction = p_dbl(lower = 0.1, upper = 1),
         | 
| 5 | 
            +
              mtry.ratio = p_dbl(lower = 0, upper = 1),
         | 
| 6 | 
            +
              respect.unordered.factors = p_fct(levels = c("ignore", "order", "partition")),
         | 
| 7 | 
            +
              min.node.size = p_int(lower = 1L, upper = 100L),
         | 
| 8 | 
            +
              splitrule = p_fct(levels = c("gini", "extratrees")),
         | 
| 9 | 
            +
              num.random.splits = p_int(lower = 1L, upper = 100L, depends = splitrule == "extratrees"),
         | 
| 10 | 
            +
              trainsize = p_dbl(lower = 0.03, upper = 1, tags = "budget"),
         | 
| 11 | 
            +
              task_id = p_fct(levels = c("40981", "41146", "1489", "1067"), tags = "task_id")
         | 
| 12 | 
            +
            )
         | 
| 13 | 
            +
             | 
| 14 | 
            +
            domain = ps(
         | 
| 15 | 
            +
              num.trees = p_int(lower = 1L, upper = 2000L),
         | 
| 16 | 
            +
              replace = p_lgl(),
         | 
| 17 | 
            +
              sample.fraction = p_dbl(lower = 0.1, upper = 1),
         | 
| 18 | 
            +
              mtry.ratio = p_dbl(lower = 0, upper = 1),
         | 
| 19 | 
            +
              respect.unordered.factors = p_fct(levels = c("ignore", "order", "partition")),
         | 
| 20 | 
            +
              min.node.size = p_int(lower = 1L, upper = 100L),
         | 
| 21 | 
            +
              splitrule = p_fct(levels = c("gini", "extratrees")),
         | 
| 22 | 
            +
              num.random.splits = p_int(lower = 1L, upper = 100L, depends = splitrule == "extratrees"),
         | 
| 23 | 
            +
              trainsize = p_dbl(lower = 0.03, upper = 1, tags = "budget"),
         | 
| 24 | 
            +
              task_id = p_fct(levels = c("40981", "41146", "1489", "1067"), tags = "task_id")
         | 
| 25 | 
            +
            )
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            codomain = ps(
         | 
| 28 | 
            +
              mmce = p_dbl(lower = 0, upper = 1, tags = "minimize"),
         | 
| 29 | 
            +
              f1 = p_dbl(lower = 0, upper = 1, tags = "maximize"),
         | 
| 30 | 
            +
              auc = p_dbl(lower = 0, upper = 1, tags = "maximize"),
         | 
| 31 | 
            +
              logloss = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
         | 
| 32 | 
            +
              ramtrain = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
         | 
| 33 | 
            +
              rammodel = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
         | 
| 34 | 
            +
              rampredict = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
         | 
| 35 | 
            +
              timetrain = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
         | 
| 36 | 
            +
              timepredict = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
         | 
| 37 | 
            +
              mec = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
         | 
| 38 | 
            +
              ias = p_dbl(lower = 0, upper = Inf, tags = "minimize"),
         | 
| 39 | 
            +
              nf = p_dbl(lower = 0, upper = Inf, tags = "minimize")
         | 
| 40 | 
            +
            )
         | 
