Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
part-of-speech
Languages:
English
Size:
1K - 10K
License:
# coding=utf-8 | |
# Copyright 2020 HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
"""Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition""" | |
import os | |
import datasets | |
logger = datasets.logging.get_logger(__name__) | |
_CITATION = """\ | |
@inproceedings{ritter2011named, | |
title={Named entity recognition in tweets: an experimental study}, | |
author={Ritter, Alan and Clark, Sam and Etzioni, Oren and others}, | |
booktitle={Proceedings of the 2011 conference on empirical methods in natural language processing}, | |
pages={1524--1534}, | |
year={2011} | |
} | |
@inproceedings{foster2011hardtoparse, | |
title={\# hardtoparse: POS Tagging and Parsing the Twitterverse}, | |
author={Foster, Jennifer and Cetinoglu, Ozlem and Wagner, Joachim and Le Roux, Joseph and Hogan, Stephen and Nivre, Joakim and Hogan, Deirdre and Van Genabith, Josef}, | |
booktitle={Workshops at the Twenty-Fifth AAAI Conference on Artificial Intelligence}, | |
year={2011} | |
} | |
@inproceedings{derczynski2013twitter, | |
title={Twitter part-of-speech tagging for all: Overcoming sparse and noisy data}, | |
author={Derczynski, Leon and Ritter, Alan and Clark, Sam and Bontcheva, Kalina}, | |
booktitle={Proceedings of the international conference recent advances in natural language processing ranlp 2013}, | |
pages={198--206}, | |
year={2013} | |
} | |
""" | |
_DESCRIPTION = """\ | |
Part-of-speech information is basic NLP task. However, Twitter text | |
is difficult to part-of-speech tag: it is noisy, with linguistic errors and idiosyncratic style. | |
This dataset contains two datasets for English PoS tagging for tweets: | |
* Ritter, with train/dev/test | |
* Foster, with dev/test | |
Splits defined in the Derczynski paper, but the data is from Ritter and Foster. | |
For more details see: | |
* https://gate.ac.uk/wiki/twitter-postagger.html | |
* https://aclanthology.org/D11-1141.pdf | |
* https://www.aaai.org/ocs/index.php/ws/aaaiw11/paper/download/3912/4191 | |
""" | |
_URL = "http://downloads.gate.ac.uk/twitie/twitie-tagger.zip" | |
_RITTER_TRAIN = "twitie-tagger/corpora/ritter_train.stanford" | |
_RITTER_DEV = "twitie-tagger/corpora/ritter_dev.stanford" | |
_RITTER_TEST = "twitie-tagger/corpora/ritter_eval.stanford" | |
_FOSTER_TRAIN = None | |
_FOSTER_DEV = "twitie-tagger/corpora/foster_dev.stanford" | |
_FOSTER_TEST = "twitie-tagger/corpora/foster_eval.stanford" | |
class TwitterPosConfig(datasets.BuilderConfig): | |
"""BuilderConfig for TwitterPos""" | |
def __init__(self, **kwargs): | |
"""BuilderConfig for TwitterPos. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(TwitterPosConfig, self).__init__(**kwargs) | |
#assert variant in ('foster', 'ritter'), (f'Unrecognised variation: {variant}') | |
class TwitterPos(datasets.GeneratorBasedBuilder): | |
"""TwitterPos dataset.""" | |
BUILDER_CONFIGS = [ | |
TwitterPosConfig(name="foster", description="Foster English Twitter PoS bootstrap dataset"), | |
TwitterPosConfig(name="ritter", description="Ritter English Twitter PoS bootstrap dataset"), | |
] | |
def _info(self): | |
variant = self.config.name | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"tokens": datasets.Sequence(datasets.Value("string")), | |
"pos_tags": datasets.Sequence( | |
datasets.features.ClassLabel( | |
names=[ | |
'"', | |
"''", | |
"#", | |
"%", | |
"$", | |
"(", | |
")", | |
",", | |
".", | |
":", | |
"``", | |
"CC", | |
"CD", | |
"DT", | |
"EX", | |
"FW", | |
"IN", | |
"JJ", | |
"JJR", | |
"JJS", | |
"LS", | |
"MD", | |
"NN", | |
"NNP", | |
"NNPS", | |
"NNS", | |
"NN|SYM", | |
"PDT", | |
"POS", | |
"PRP", | |
"PRP$", | |
"RB", | |
"RBR", | |
"RBS", | |
"RP", | |
"SYM", | |
"TO", | |
"UH", | |
"VB", | |
"VBD", | |
"VBG", | |
"VBN", | |
"VBP", | |
"VBZ", | |
"WDT", | |
"WP", | |
"WP$", | |
"WRB", | |
"RT", | |
"HT", | |
"USR", | |
"URL", | |
] | |
) | |
), | |
} | |
), | |
supervised_keys=None, | |
homepage="https://gate.ac.uk/wiki/twitter-postagger.html", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
downloaded_file = dl_manager.download_and_extract(_URL) | |
if self.config.name == 'ritter': | |
data_files = { | |
"train": os.path.join(downloaded_file, _RITTER_TRAIN), | |
"dev": os.path.join(downloaded_file, _RITTER_DEV), | |
"test": os.path.join(downloaded_file, _RITTER_TEST), | |
} | |
elif self.config.name == 'foster': | |
data_files = { | |
"dev": os.path.join(downloaded_file, _FOSTER_DEV), | |
"test": os.path.join(downloaded_file, _FOSTER_TEST), | |
} | |
splits = [ | |
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_files["dev"]}), | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_files["test"]}), | |
] | |
if "train" in data_files: | |
splits.append(datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files["train"]})) | |
return splits | |
def _generate_examples(self, filepath): | |
logger.info("⏳ Generating examples from = %s", filepath) | |
with open(filepath, encoding="utf-8") as f: | |
guid = 0 | |
for line in f: | |
tokens = [] | |
pos_tags = [] | |
if line.startswith("-DOCSTART-") or line.strip() == "" or line == "\n": | |
continue | |
else: | |
line = line.replace('_VPB ', '_VBP ') # tag type fixes | |
line = line.replace('_TD ', '_DT ') # tag type fixes | |
line = line.replace('_ADVP ', '_RB ') # tag type fixes | |
line = line.replace('_NONE ', '_: ') # tag type fixes | |
line = line.replace(' please_VPP ', ' please_VBP ') # tag type fixes | |
line = line.replace(' ".._O ', ' ".._" ') # tag type fixes | |
# twitter-pos gives one seq per line, as token_tag | |
annotated_words = line.strip().split(' ') | |
tokens = ['_'.join(token.split('_')[:-1]) for token in annotated_words] | |
pos_tags = [token.split('_')[-1] for token in annotated_words] | |
yield guid, { | |
"id": str(guid), | |
"tokens": tokens, | |
"pos_tags": pos_tags, | |
} | |
guid += 1 | |