--- dataset_info: features: - name: image dtype: image - name: box dtype: array2_d: shape: - 1 - 4 dtype: float32 - name: class dtype: string - name: test_action dtype: string - name: expectation dtype: string - name: conclusion dtype: string - name: language dtype: string - name: brand dtype: string splits: - name: test num_bytes: 10799037234.96 num_examples: 4208 download_size: 2543121896 dataset_size: 10799037234.96 configs: - config_name: default data_files: - split: test path: data/test-* license: cc-by-4.0 task_categories: - visual-question-answering language: - de - en tags: - automotive - car - ui - gui - interface --- # AutomotiveUI-Bench-4K Dataset Overview: 998 images and 4,208 annotations focusing on interaction with in-vehicle infotainment (IVI) systems. Key Features: - Serves as a validation benchmark for automotive UI. - Scope: Covers 15 automotive brands/OEMs, model years 2018-2025. - Image Source: Primarily photographs of IVI displays (due to screenshot limitations in most vehicles), with some direct screenshots (e.g., Android Auto). - Annotation Classes: - Test Action: Bounding box + imperative command in natural language. - Expected Result: Bounding box + expected outcome in natural lanugage + Pass/Fail status. - Bounding boxes are in format [[x0,y0,x1,y1]] - Languages: - IVI UI: German and English. - Annotations: English only (German UI text translated or quoted). - 15 Brands/OEMs: - VW: 170 - Kia: 124 - Audi: 91 - Cupra: 85 - Porsche: 78 - Ford: 72 - Maserati: 72 - Mini: 60 - BMW: 59 - Peugot: 52 - Tesla: 51 - Toyota: 34 - Opel: 30 - Apple CarPlay: 13 - Google Android Auto: 7 ## Usage Corresponding model [ELAM](https://huggingface.co/sparks-solutions/ELAM-7B) is available on Hugging Face as well.
Setup Environment for ELAM-7B ``` conda create -n elam python=3.10 -y conda activate elam pip install datasets==3.5.0 einops==0.8.1 torchvision==0.20.1 accelerate==1.6.0 pip install transformers==4.48.2 ```
Dataloading and Inference with ELAM-7B ```python # Run inference on AutomotiveUI-4k dataset on local GPU # Outputs will be written in a JSONL file import json import os import time import torch from datasets import Dataset, load_dataset from tqdm import tqdm from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig def preprocess_prompt_elam(user_request: str, label_class: str) -> str: """Apply ELAM prompt template depending on class.""" if label_class == "Expected Result": return f"Evaluate this statement about the image:\n'{user_request}'\nThink step by step, conclude whether the evaluation is 'PASSED' or 'FAILED' and point to the UI element that corresponds to this evaluation." elif label_class == "Test Action": return f"Identify and point to the UI element that corresponds to this test action:\n{user_request}" else: raise ValueError() def append_to_jsonl_file(data: dict, target_path: str) -> None: assert str(target_path).endswith(".jsonl") with open(target_path, "a", encoding="utf-8") as file: file.write(f"{json.dumps(data, ensure_ascii=False)}\n") def run_inference(dataset: Dataset, model: AutoModelForCausalLM, processor: AutoProcessor): # Define output dir and file timestamp = time.strftime("%Y%m%d-%H%M%S") DEBUG_DIR = os.path.join("eval_output", timestamp) model_outputs_path = os.path.join(DEBUG_DIR, f"model_outputs.jsonl") print(f"Writing data to: {model_outputs_path}") for sample_id, sample in enumerate(tqdm(dataset, desc="Processing")): image = sample["image"] gt_box = sample["box"][0] label_class = sample["class"] # read gt box utterance = None gt_status = None if "Expected Result" == label_class: utterance = sample["expectation"] gt_status = sample["conclusion"].upper() elif "Test Action" == label_class: utterance = sample["test_action"] else: raise ValueError(f"Did not find valid utterance for image #{sample_id}.") assert utterance # Apply prompt template rephrased_utterance = preprocess_prompt_elam(utterance, label_class) # Process the image and text inputs = processor.process( images=[image], text=rephrased_utterance, ) # Move inputs to the correct device and make a batch of size 1, cast to bfloat16 inputs_bfloat16 = {} for k, v in inputs.items(): if v.dtype == torch.float32: inputs_bfloat16[k] = v.to(model.device).to(torch.bfloat16).unsqueeze(0) else: inputs_bfloat16[k] = v.to(model.device).unsqueeze(0) inputs = inputs_bfloat16 # Replace original inputs with the correctly typed inputs # Generate output output = model.generate_from_batch( inputs, GenerationConfig(max_new_tokens=2048, stop_strings="<|endoftext|>"), tokenizer=processor.tokenizer ) # Only get generated tokens; decode them to text generated_tokens = output[0, inputs["input_ids"].size(1) :] response = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True) # write current image with current label os.makedirs(DEBUG_DIR, exist_ok=True) # append line to jsonl model_output_line = { "sample_id": sample_id, "input": rephrased_utterance, "output": response, "image_size": image.size, "gt_class": label_class, "gt_box": gt_box, "gt_status": gt_status, "language": sample["language"], } append_to_jsonl_file(model_output_line, target_path=model_outputs_path) if __name__ == "__main__": # Set dataset dataset = load_dataset("sparks-solutions/AutomotiveUI-Bench-4K")["test"] # Load the processor model_name = "sparks-solutions/ELAM-7B" processor = AutoProcessor.from_pretrained( model_name, trust_remote_code=True, torch_dtype="bfloat16", device_map="auto" ) # Load the model model = AutoModelForCausalLM.from_pretrained( model_name, trust_remote_code=True, torch_dtype="bfloat16", device_map="auto" ) run_inference(dataset=dataset, processor=processor, model=model) ```
Parsing results and calculating metrics ```python import argparse import json import re from pathlib import Path from typing import Tuple import numpy as np def read_jsonl_file(path: str) -> list: assert str(path).endswith(".jsonl") data_list = [] with open(path, "r", encoding="utf-8") as file: for line in file: data = json.loads(line) data_list.append(data) return data_list def write_json_file(data: dict | list, path: str) -> None: assert str(path).endswith(".json") with open(path, "w", encoding="utf-8") as outfile: json.dump(data, outfile, ensure_ascii=False, indent=4) def postprocess_response_elam(response: str) -> Tuple[float, float]: """Parse Molmo-style point coordinates from string.""" pattern = r'= ground_truth_boxes[:, 0]) & (predicted_centers[:, 0] <= ground_truth_boxes[:, 2]) & (predicted_centers[:, 1] >= ground_truth_boxes[:, 1]) & (predicted_centers[:, 1] <= ground_truth_boxes[:, 3]) ) return within_gt def to_mean_percent(metrics: list | np.ndarray) -> float: """Calculate mean of array and multiply by 100.""" return np.mean(metrics) * 100 def calculate_alignment_numpy(array1, array2): """Returns boolean array where values are equal""" if array1.size == 0: # Check for empty numpy array just to be explicit return [], [], [] # Overall Accuracy overall_hits = array1 == array2 # True Ground Truth Accuracy true_ground_truth_indices = array2 == True # Boolean mask for True ground truth true_ground_truth_predictions = array1[true_ground_truth_indices] true_ground_truth_actuals = array2[true_ground_truth_indices] true_gt_hits = true_ground_truth_predictions == true_ground_truth_actuals # False Ground Truth Accuracy false_ground_truth_indices = array2 == False # Boolean mask for False ground truth false_ground_truth_predictions = array1[false_ground_truth_indices] false_ground_truth_actuals = array2[false_ground_truth_indices] false_gt_hits = false_ground_truth_predictions == false_ground_truth_actuals return overall_hits, true_gt_hits, false_gt_hits def clip_non_minus_one(arr): """Clips values in a NumPy array to [0, 1] but leaves -1 values unchanged.""" # Create a boolean mask for values NOT equal to -1 mask = arr != -1 # Create a copy of the array to avoid modifying the original in-place clipped_arr = np.copy(arr) # Apply clipping ONLY to the elements where the mask is True clipped_arr[mask] = np.clip(clipped_arr[mask], 0, 1) return clipped_arr if __name__ == "__main__": parser = argparse.ArgumentParser(description="Run model inference and save outputs.") parser.add_argument( "-m", "--model_output_path", type=str, help="Path to json that contains model outputs from eval.", required=True ) args = parser.parse_args() EVAL_PATH = args.model_output_path eval_jsonl_data = read_jsonl_file(EVAL_PATH) ta_pred_bboxes, ta_gt_bboxes = [], [] er_pred_bboxes, er_gt_bboxes = [], [] er_pred_conclusion, er_gt_conclusion = [], [] ta_out_images, er_out_images = [], [] failed_pred_responses = [] er_en_ids = [] ta_en_ids = [] ta_de_ids = [] er_de_ids = [] for line in eval_jsonl_data: # Read data from line image_width, image_height = line["image_size"] gt_box = line["gt_box"] lang = line["language"] response_raw = line["output"] if "Test Action" == line["gt_class"]: # Parse point/box from response and clip to image parsed_response = postprocess_response_elam(response_raw) if parsed_response[0] == -1: failed_pred_responses.append({"sample_id": line["sample_id"], "response": response_raw}) parsed_response = np.array(parsed_response) parsed_response = clip_non_minus_one(parsed_response).tolist() # Append results ta_gt_bboxes.append(gt_box) ta_pred_bboxes.append(parsed_response) if lang == "DE": ta_de_ids.append(len(ta_pred_bboxes) - 1) # append id elif lang == "EN": ta_en_ids.append(len(ta_pred_bboxes) - 1) elif "Expected Result" in line["gt_class"]: er_gt_bboxes.append(gt_box) # Parse point/box from response and clip to image parsed_response = postprocess_response_elam(response_raw) if parsed_response[0] == -1: failed_pred_responses.append({"sample_id": line["sample_id"], "response": response_raw}) parsed_response = np.array(parsed_response) parsed_response = clip_non_minus_one(parsed_response).tolist() er_pred_bboxes.append(parsed_response) # Read evaluation conclusion gt_conclusion = line["gt_status"].upper() gt_conclusion = True if gt_conclusion == "PASSED" else False pred_conclusion = None if "FAILED" in response_raw or "is not met" in response_raw: pred_conclusion = False elif "PASSED" in response_raw or "is met" in response_raw: pred_conclusion = True if pred_conclusion is None: # Make prediction wrong if it couldn't be parsed pred_conclusion = not gt_conclusion er_gt_conclusion.append(gt_conclusion) er_pred_conclusion.append(pred_conclusion) if lang == "DE": er_de_ids.append(len(er_pred_bboxes) - 1) elif lang == "EN": er_en_ids.append(len(er_pred_bboxes) - 1) ta_pred_bboxes = np.array(ta_pred_bboxes) ta_gt_bboxes = np.array(ta_gt_bboxes) er_pred_bboxes = np.array(er_pred_bboxes) er_gt_bboxes = np.array(er_gt_bboxes) er_pred_conclusion = np.array(er_pred_conclusion) er_gt_conclusion = np.array(er_gt_conclusion) print(f"{'Test action (pred/gt):':<{36}}{ta_pred_bboxes.shape}, {ta_gt_bboxes.shape}") print(f"{'Expected results (pred/gt):':<{36}}{er_pred_bboxes.shape}, {er_gt_bboxes.shape}") # Calculate metrics ta_pred_hits = pred_center_in_gt(ta_pred_bboxes, ta_gt_bboxes) score_ta = to_mean_percent(ta_pred_hits) er_pred_hits = pred_center_in_gt(er_pred_bboxes, er_gt_bboxes) score_er = to_mean_percent(er_pred_hits) overall_hits, true_gt_hits, false_gt_hits = calculate_alignment_numpy(er_pred_conclusion, er_gt_conclusion) score_conclusion = to_mean_percent(overall_hits) score_conclusion_gt_true = to_mean_percent(true_gt_hits) score_conclusion_gt_false = to_mean_percent(false_gt_hits) # Calculate language-specific metrics for TA score_ta_en = to_mean_percent(ta_pred_hits[ta_en_ids]) score_ta_de = to_mean_percent(ta_pred_hits[ta_de_ids]) # Calculate language-specific metrics for ER (bbox) score_er_en = to_mean_percent(er_pred_hits[er_en_ids]) score_er_de = to_mean_percent(er_pred_hits[er_de_ids]) # Calculate language-specific metrics for ER (conclusion) score_conclusion_en = to_mean_percent(overall_hits[er_en_ids]) score_conclusion_de = to_mean_percent(overall_hits[er_de_ids]) print(f"\n{'Test action visual grounding:':<{36}}{score_ta:.1f}") print(f"{'Expected result visual grounding:':<{36}}{score_er:.1f}") print(f"{'Expected result evaluation:':<{36}}{score_conclusion:.1f}\n") eval_out_path = Path(EVAL_PATH).parent / "eval_results.json" write_json_file( { "score_ta": score_ta, "score_ta_de": score_ta_de, "score_ta_en": score_ta_en, "score_er": score_er, "score_er_de": score_er_de, "score_er_en": score_er_en, "score_er_conclusion": score_conclusion, "score_er_conclusion_de": score_conclusion_de, "score_er_conclusion_en": score_conclusion_en, "score_conclusion_gt_true": score_conclusion_gt_true, "score_conclusion_gt_false": score_conclusion_gt_false, }, path=eval_out_path, ) print(f"Stored results at {eval_out_path}") if failed_pred_responses: failed_responses_out_path = Path(EVAL_PATH).parent / "failed_responses.json" write_json_file(failed_pred_responses, failed_responses_out_path) print(f"Stored non-parsable responses at {failed_responses_out_path}") ```
## Results | Model | Test Action Grounding | Expected Result Grounding | Expected Result Evaluation | |---|---|---|---| | InternVL2.5-8B | 26.6 | 5.7 | 64.8 | | TinyClick | 61.0 | 54.6 | - | | UGround-V1-7B (Qwen2-VL) | 69.4 | 55.0 | - | | Molmo-7B-D-0924 | 71.3 | 71.4 | 66.9 | | LAM-270M (TinyClick) | 73.9 | 59.9 | - | | ELAM-7B (Molmo) | **87.6** | **77.5** | **78.2** | # Citation If you find ELAM or AutomotiveUI-Bench-4K useful in your research, please cite the following paper: ``` latex @misc{ernhofer2025leveragingvisionlanguagemodelsvisual, title={Leveraging Vision-Language Models for Visual Grounding and Analysis of Automotive UI}, author={Benjamin Raphael Ernhofer and Daniil Prokhorov and Jannica Langner and Dominik Bollmann}, year={2025}, eprint={2505.05895}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2505.05895}, } ``` # Acknowledgements ## Funding This work was supported by German BMBF within the scope of project "KI4BoardNet".