sovai commited on
Commit
3e8f7d5
·
1 Parent(s): 47f6239

Add factor_signals.parquet and README.md

Browse files
Files changed (2) hide show
  1. README.md +150 -0
  2. factor_signals.parquet +3 -0
README.md ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ icon: wave-square
3
+ description: >-
4
+ A financial factor dataset for in-depth company analysis and investment
5
+ strategies.
6
+ ---
7
+
8
+ # Factor Signals
9
+
10
+ > **Data Notice**: This dataset provides academic research access with a 6-month data lag.
11
+ > For real-time data access, please visit [sov.ai](https://sov.ai) to subscribe.
12
+ > For market insights and additional subscription options, check out our newsletter at [blog.sov.ai](https://blog.sov.ai).
13
+
14
+ ```python
15
+ from datasets import load_dataset
16
+ df_factor_comp = load_dataset("sovai/factor_signals", split="train").to_pandas().set_index(["factor","date"])
17
+ ```
18
+
19
+
20
+
21
+ Data is updated weekly as data arrives after market close US-EST time.
22
+
23
+
24
+ `Tutorials` are the best documentation — [<mark style="color:blue;">`Factor Signals Tutorial`</mark>](https://colab.research.google.com/github/sovai-research/sovai-public/blob/main/notebooks/datasets/Factor%20Model.ipynb)
25
+
26
+ <table data-column-title-hidden data-view="cards"><thead><tr><th>Category</th><th>Details</th></tr></thead><tbody><tr><td><strong>Input Datasets</strong></td><td>Filings, Financial Data</td></tr><tr><td><strong>Models Used</strong></td><td>OLS Regression</td></tr><tr><td><strong>Model Outputs</strong></td><td>Factors, Coefficients, Standard Errors</td></tr></tbody></table>
27
+
28
+ ## Description
29
+
30
+ This dataset includes traditional accounting factors, alternative financial metrics, and advanced statistical analyses, enabling sophisticated financial modeling.
31
+
32
+ It could be used for bottom-up equity selection strategies and for the development of investment strategies.
33
+
34
+ ***
35
+
36
+ ## Data Access
37
+
38
+ #### Comprehensive Factors
39
+
40
+ Comprehensive Factors dataset is a merged set of both accounting and alternative financial metrics, providing a holistic view of a company's financial status.
41
+
42
+ ```python
43
+ import sovai as sov
44
+ df_factor_comp = sov.data("factors/comprehensive",tickers=["MSFT","TSLA"])
45
+ ```
46
+
47
+ <figure><img src="https://raw.githubusercontent.com/sovai-research/sovai-documentation/main/.gitbook/assets/factor_signals_1 (2).png" alt=""><figcaption></figcaption></figure>
48
+
49
+ #### Accounting Factors
50
+
51
+ The Accounting Factors dataset includes key financial metrics related to accounting for various companies.
52
+
53
+ ```python
54
+ import sovai as sov
55
+ df_factor_actn = sov.data("factors/accounting",tickers=["MSFT","TSLA"])
56
+ ```
57
+
58
+ #### Alternative Factors
59
+
60
+ This dataset contains alternative financial factors that are not typically found in standard financial statements.
61
+
62
+ ```python
63
+ import sovai as sov
64
+ df_factor_alt = sov.data("factors/alternative",tickers=["MSFT","TSLA"])
65
+ ```
66
+
67
+ #### Coefficients Factors
68
+
69
+ The Coefficients Factors dataset includes various coefficients related to different financial metrics.
70
+
71
+ <pre class="language-python"><code class="lang-python">import sovai as sov
72
+ <strong>df_factor_coeff = sov.data("factors/coefficients",tickers=["MSFT","TSLA"])
73
+ </strong></code></pre>
74
+
75
+ #### Standard Errors Factors
76
+
77
+ This dataset provides standard errors for various financial metrics, useful for statistical analysis and modeling.
78
+
79
+ ```python
80
+ import sovai as sov
81
+ df_factor_std_err = get_data("factors/standard_errors",tickers=["MSFT","TSLA"])
82
+ ```
83
+
84
+ #### T-Statistics Factors
85
+
86
+ The T-Statistics Factors dataset includes t-statistics for different financial metrics, offering insights into their significance.
87
+
88
+ ```python
89
+ import sovai as sov
90
+ df_factor_t_stat = get_data("factors/t_statistics",tickers=["MSFT","TSLA"])
91
+ ```
92
+
93
+ #### Model Metrics
94
+
95
+ Model Metrics dataset includes various metrics such as R-squared, AIC, BIC, etc., that are crucial for evaluating the performance of financial models.
96
+
97
+ ```python
98
+ import sovai as sov
99
+ df_model_metrics = sov.data("factors/model_metrics",tickers=["MSFT","TSLA"])
100
+ ```
101
+
102
+ ***
103
+
104
+ This documentation provides a clear guide on how to access each dataset, and can be easily extended or modified as needed for additional datasets or details.
105
+
106
+ ## Data Dictionary
107
+
108
+ ### Financial Factors Dataset
109
+
110
+ <table><thead><tr><th width="286">Name</th><th>Description</th></tr></thead><tbody><tr><td><code>ticker</code></td><td>The unique identifier for a publicly traded company's stock.</td></tr><tr><td><code>date</code></td><td>The specific date for which the data is recorded.</td></tr><tr><td><code>profitability</code></td><td>A measure of a company's efficiency in generating profits.</td></tr><tr><td><code>value</code></td><td>Indicates the company's market value, often reflecting its perceived worth.</td></tr><tr><td><code>solvency</code></td><td>Reflects the company's ability to meet its long-term financial obligations.</td></tr><tr><td><code>cash_flow</code></td><td>Represents the amount of cash being transferred into and out of a business.</td></tr><tr><td><code>illiquidity</code></td><td>Measures the difficulty of converting assets into cash quickly without significant loss in value.</td></tr><tr><td><code>momentum_long_term</code></td><td>Indicates long-term trends in the company's stock price movements.</td></tr><tr><td><code>momentum_medium_term</code></td><td>Represents medium-term trends in stock price movements.</td></tr><tr><td><code>short_term_reversal</code></td><td>Reflects short-term price reversals in the stock market.</td></tr><tr><td><code>price_volatility</code></td><td>Measures the degree of variation in a company's stock price over time.</td></tr><tr><td><code>dividend_yield</code></td><td>The dividend per share, divided by the price per share, showing how much a company pays out in dividends each year relative to its stock price.</td></tr><tr><td><code>earnings_consistency</code></td><td>Indicates the stability and predictability of a company's earnings over time.</td></tr><tr><td><code>small_size</code></td><td>A factor indicating the company's size, with smaller companies potentially offering higher returns (albeit with higher risk).</td></tr><tr><td><code>low_growth</code></td><td>Reflects the company's lower-than-average growth prospects.</td></tr><tr><td><code>low_equity_issuance</code></td><td>Indicates a lower level of issuing new shares, which can be a sign of financial strength or limited growth prospects.</td></tr><tr><td><code>bounce_dip</code></td><td>Measures the tendency of a stock to recover quickly after a significant drop.</td></tr><tr><td><code>accrual_growth</code></td><td>Represents the growth rate in accruals, which are earnings not yet realized in cash.</td></tr><tr><td><code>low_depreciation_growth</code></td><td>Indicates lower growth in depreciation expenses, which might suggest more stable capital expenditures.</td></tr><tr><td><code>current_liquidity</code></td><td>A measure of a company's ability to pay off its short-term liabilities with its short-term assets.</td></tr><tr><td><code>low_rnd</code></td><td>Reflects lower expenditures on research and development, which could indicate less investment in future growth.</td></tr><tr><td><code>momentum</code></td><td>Overall momentum factor, representing the general trend in the stock price movements.</td></tr><tr><td><code>market_risk</code></td><td>Indicates the risk of an investment in a particular market relative to the entire market.</td></tr><tr><td><code>business_risk</code></td><td>Reflects the inherent risk associated with the specific business activities of a company.</td></tr><tr><td><code>political_risk</code></td><td>Measures the potential for losses due to political instability or changes in a country's political environment.</td></tr><tr><td><code>inflation_fluctuation</code></td><td>Indicates how sensitive the company is to fluctuations in inflation rates.</td></tr><tr><td><code>inflation_persistence</code></td><td>Measures the company's exposure to persistent inflation trends.</td></tr><tr><td><code>returns</code></td><td>Represents the financial returns generated by the company over a specified period.</td></tr></tbody></table>
111
+
112
+ ### ModelMetrics Dataset
113
+
114
+ <table><thead><tr><th width="267">Name</th><th>Description</th></tr></thead><tbody><tr><td><code>ticker</code></td><td>The unique stock ticker symbol identifying the company.</td></tr><tr><td><code>date</code></td><td>The date for which the model metrics are calculated.</td></tr><tr><td><code>rsquared</code></td><td>The R-squared value, indicating the proportion of variance in the dependent variable that's predictable from the independent variables.</td></tr><tr><td><code>rsquared_adj</code></td><td>The adjusted R-squared value, accounting for the number of predictors in the model (provides a more accurate measure when dealing with multiple predictors).</td></tr><tr><td><code>fvalue</code></td><td>The F-statistic value, used to determine if the overall regression model is a good fit for the data.</td></tr><tr><td><code>aic</code></td><td>Akaike’s Information Criterion, a measure of the relative quality of statistical models for a given set of data. Lower AIC indicates a better model.</td></tr><tr><td><code>bic</code></td><td>Bayesian Information Criterion, similar to AIC but with a higher penalty for models with more parameters.</td></tr><tr><td><code>mse_resid</code></td><td>Mean Squared Error of the residuals, measuring the average of the squares of the errors, i.e., the average squared difference between the estimated values and the actual value.</td></tr><tr><td><code>mse_total</code></td><td>Total Mean Squared Error, measuring the total variance in the observed data.</td></tr></tbody></table>
115
+
116
+ In addition to the primary financial metrics and model metrics, our data suite includes three specialized datasets:
117
+
118
+ * **Coefficients**: This dataset provides regression coefficients for various financial factors. These coefficients offer insights into the relative importance and impact of each factor in financial models.
119
+ * **Standard Errors**: Accompanying the coefficients, this dataset provides the standard error for each coefficient. The standard errors are crucial for understanding the precision and reliability of the coefficients in the model.
120
+ * **T-Statistics**: This dataset contains the t-statistic for each coefficient, a key metric for determining the statistical significance of each financial factor. It helps in evaluating the robustness of the coefficients' impact in the model.
121
+
122
+ These datasets form a comprehensive toolkit for financial analysis, enabling detailed regression analysis and statistical evaluation of financial factors.
123
+
124
+ ### Factor Analysis Datasets
125
+
126
+ Our suite of Factor Analysis datasets offers a rich and comprehensive resource for investors seeking to deepen their understanding of market dynamics and enhance their investment strategies. Here's an overview of each dataset and its potential use cases:
127
+
128
+ #### Comprehensive Financial Metrics
129
+
130
+ 1. **Accounting Factors (`FactorsAccounting`)**: This dataset includes core financial metrics like profitability, solvency, and cash flow. It's invaluable for fundamental analysis, enabling investors to assess a company's financial health and operational efficiency.
131
+ 2. **Alternative Factors (`FactorsAlternative`)**: Focusing on non-traditional financial metrics such as market risk, business risk, and political risk, this dataset helps in evaluating external factors that could impact a company's performance.
132
+ 3. **Comprehensive Factors (`FactorsComprehensive`)**: A merged set of accounting and alternative factors providing a holistic view of a company's status. This dataset is perfect for a comprehensive financial analysis, blending traditional and modern financial metrics.
133
+
134
+ #### Advanced Statistical Analysis
135
+
136
+ 1. **Coefficients (`FactorsCoefficients`)**: Reveals the weight or importance of each financial factor in a statistical model. Investors can use this to identify which factors are most influential in predicting stock performance.
137
+ 2. **Standard Errors (`FactorsStandardErrors`)**: Provides precision levels of the coefficients. This is crucial for investors in assessing the reliability of the coefficients in predictive models.
138
+ 3. **T-Statistics (`FactorsTStatistics`)**: Offers insights into the statistical significance of each factor. Investors can use this to gauge the robustness and credibility of the factors in their investment models.
139
+ 4. **Model Metrics (`ModelMetrics`)**: Includes advanced metrics like R-squared, AIC, and BIC. This dataset is essential for evaluating the effectiveness of financial models, helping investors to choose the most reliable models for their investment decisions.
140
+
141
+ #### Potential Use Cases
142
+
143
+ * **Portfolio Construction and Optimization**: By understanding the importance and impact of various financial factors, investors can construct and optimize their portfolios to maximize returns and minimize risks.
144
+ * **Risk Assessment and Management**: Alternative factors, along with risk-related metrics from other datasets, enable investors to conduct thorough risk assessments, leading to better risk management strategies.
145
+ * **Market Trend Analysis**: Long-term and medium-term momentum factors can be used for identifying prevailing market trends, aiding in strategic investment decisions.
146
+ * **Statistical Model Validation**: Investors can validate their financial models using model metrics and statistical datasets (Standard Errors and T-Statistics), ensuring robustness and reliability in their analysis.
147
+
148
+ ###
149
+
150
+ ***
factor_signals.parquet ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:182a5d12dc6b00e1f2b55551aed06d079a62c81eb65fb9f153f90f8f8476abdb
3
+ size 212680278