gonzalobenegas commited on
Commit
ba90cbe
·
verified ·
1 Parent(s): 880f59a

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. mendelian_traits_matched_9/AUPRC_by_chrom/3_prime_UTR_variant/GPN_final.LogisticRegression.chrom.subset_from_all.csv +8 -0
  2. mendelian_traits_matched_9/AUPRC_by_chrom/3_prime_UTR_variant/GPN_final_LLR.minus.score.csv +8 -0
  3. mendelian_traits_matched_9/AUPRC_by_chrom/5_prime_UTR_variant/GPN_final.LogisticRegression.chrom.subset_from_all.csv +18 -0
  4. mendelian_traits_matched_9/AUPRC_by_chrom/5_prime_UTR_variant/GPN_final_LLR.minus.score.csv +18 -0
  5. mendelian_traits_matched_9/AUPRC_by_chrom/all/Borzoi_L2_L2.plus.all.csv +20 -0
  6. mendelian_traits_matched_9/AUPRC_by_chrom/all/CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.csv +20 -0
  7. mendelian_traits_matched_9/AUPRC_by_chrom/all/CADD.LogisticRegression.chrom.csv +20 -0
  8. mendelian_traits_matched_9/AUPRC_by_chrom/all/Caduceus_InnerProduct.minus.score.csv +20 -0
  9. mendelian_traits_matched_9/AUPRC_by_chrom/all/Enformer_L2_L2.plus.all.csv +20 -0
  10. mendelian_traits_matched_9/AUPRC_by_chrom/all/GPN-MSA+Borzoi.LogisticRegression.chrom.csv +20 -0
  11. mendelian_traits_matched_9/AUPRC_by_chrom/all/GPN_final_Embeddings.plus.cosine_distance.csv +20 -0
  12. mendelian_traits_matched_9/AUPRC_by_chrom/all/GPN_final_EuclideanDistance.plus.score.csv +20 -0
  13. mendelian_traits_matched_9/AUPRC_by_chrom/all/NucleotideTransformer_Embeddings.plus.cosine_distance.csv +20 -0
  14. mendelian_traits_matched_9/AUPRC_by_chrom/non_coding_transcript_exon_variant/GPN_final_LLR.minus.score.csv +9 -0
  15. mendelian_traits_matched_9/AUPRC_by_chrom/nonexonic_AND_proximal/GPN_final_LLR.minus.score.csv +16 -0
  16. mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/3_prime_UTR_variant/GPN_final.LogisticRegression.chrom.subset_from_all.csv +2 -0
  17. mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/3_prime_UTR_variant/GPN_final_LLR.minus.score.csv +2 -0
  18. mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/Borzoi.LogisticRegression.chrom.csv +2 -0
  19. mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/Borzoi_L2_L2.plus.all.csv +2 -0
  20. mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/CADD+Borzoi.LogisticRegression.chrom.csv +2 -0
  21. mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.csv +2 -0
  22. mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/CADD.LogisticRegression.chrom.csv +2 -0
  23. mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/CADD.plus.RawScore.csv +2 -0
  24. mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/Caduceus_Embeddings.minus.inner_product.csv +2 -0
  25. mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/Caduceus_Embeddings.plus.cosine_distance.csv +2 -0
  26. mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/Enformer.LogisticRegression.chrom.csv +2 -0
  27. mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/GPN-MSA+Borzoi.LogisticRegression.chrom.csv +2 -0
  28. mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/GPN-MSA_Embeddings.minus.inner_product.csv +2 -0
  29. mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/GPN-MSA_Embeddings.plus.cosine_distance.csv +2 -0
  30. mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/GPN-MSA_Embeddings.plus.euclidean_distance.csv +2 -0
  31. mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/GPN-MSA_InnerProduct.minus.score.csv +2 -0
  32. mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/GPN-MSA_LLR.minus.score.csv +2 -0
  33. mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/GPN-MSA_absLLR.plus.score.csv +2 -0
  34. mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/GPN_final.LogisticRegression.chrom.csv +2 -0
  35. mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/GPN_final_Embeddings.plus.cosine_distance.csv +2 -0
  36. mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/GPN_final_InnerProduct.minus.score.csv +2 -0
  37. mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/GPN_final_LLR.minus.score.csv +2 -0
  38. mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/GPN_final_absLLR.plus.score.csv +2 -0
  39. mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/HyenaDNA.LogisticRegression.chrom.csv +2 -0
  40. mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/HyenaDNA_Embeddings.minus.inner_product.csv +2 -0
  41. mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/HyenaDNA_Embeddings.plus.cosine_distance.csv +2 -0
  42. mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/HyenaDNA_Embeddings.plus.euclidean_distance.csv +2 -0
  43. mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/HyenaDNA_InnerProduct.minus.score.csv +2 -0
  44. mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/HyenaDNA_LLR.minus.score.csv +2 -0
  45. mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/NucleotideTransformer_Embeddings.minus.inner_product.csv +2 -0
  46. mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/NucleotideTransformer_Embeddings.plus.cosine_distance.csv +2 -0
  47. mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/NucleotideTransformer_InnerProduct.minus.score.csv +2 -0
  48. mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/NucleotideTransformer_absLLR.plus.score.csv +2 -0
  49. mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/no_cadd_overlap/Borzoi_L2_L2.plus.all.csv +2 -0
  50. mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/no_cadd_overlap/CADD.LogisticRegression.chrom.subset_from_all.csv +2 -0
mendelian_traits_matched_9/AUPRC_by_chrom/3_prime_UTR_variant/GPN_final.LogisticRegression.chrom.subset_from_all.csv ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,60,GPN_final.LogisticRegression.chrom.subset_from_all,0.32794198139025726
3
+ 8,10,GPN_final.LogisticRegression.chrom.subset_from_all,0.14285714285714285
4
+ 11,70,GPN_final.LogisticRegression.chrom.subset_from_all,0.15321532671804905
5
+ 13,40,GPN_final.LogisticRegression.chrom.subset_from_all,0.3144230769230769
6
+ 14,10,GPN_final.LogisticRegression.chrom.subset_from_all,0.1111111111111111
7
+ 16,60,GPN_final.LogisticRegression.chrom.subset_from_all,0.27557132410073587
8
+ X,40,GPN_final.LogisticRegression.chrom.subset_from_all,0.1444139194139194
mendelian_traits_matched_9/AUPRC_by_chrom/3_prime_UTR_variant/GPN_final_LLR.minus.score.csv ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,60,GPN_final_LLR.minus.score,0.2775397840295538
3
+ 8,10,GPN_final_LLR.minus.score,0.125
4
+ 11,70,GPN_final_LLR.minus.score,0.13885669733822947
5
+ 13,40,GPN_final_LLR.minus.score,0.13686371100164202
6
+ 14,10,GPN_final_LLR.minus.score,0.1
7
+ 16,60,GPN_final_LLR.minus.score,0.4027298542101173
8
+ X,40,GPN_final_LLR.minus.score,0.12670250896057347
mendelian_traits_matched_9/AUPRC_by_chrom/5_prime_UTR_variant/GPN_final.LogisticRegression.chrom.subset_from_all.csv ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,80,GPN_final.LogisticRegression.chrom.subset_from_all,0.30865108362910665
3
+ 2,30,GPN_final.LogisticRegression.chrom.subset_from_all,0.4288888888888889
4
+ 3,30,GPN_final.LogisticRegression.chrom.subset_from_all,0.25
5
+ 5,20,GPN_final.LogisticRegression.chrom.subset_from_all,0.12142857142857143
6
+ 6,20,GPN_final.LogisticRegression.chrom.subset_from_all,0.5
7
+ 7,20,GPN_final.LogisticRegression.chrom.subset_from_all,0.8333333333333333
8
+ 9,40,GPN_final.LogisticRegression.chrom.subset_from_all,0.2908119658119658
9
+ 10,110,GPN_final.LogisticRegression.chrom.subset_from_all,0.0856514621199276
10
+ 11,230,GPN_final.LogisticRegression.chrom.subset_from_all,0.5880261831144116
11
+ 12,10,GPN_final.LogisticRegression.chrom.subset_from_all,1.0
12
+ 13,70,GPN_final.LogisticRegression.chrom.subset_from_all,0.16921438651516207
13
+ 14,20,GPN_final.LogisticRegression.chrom.subset_from_all,1.0
14
+ 17,20,GPN_final.LogisticRegression.chrom.subset_from_all,0.26785714285714285
15
+ 19,260,GPN_final.LogisticRegression.chrom.subset_from_all,0.6429561156097049
16
+ 20,10,GPN_final.LogisticRegression.chrom.subset_from_all,0.25
17
+ 22,10,GPN_final.LogisticRegression.chrom.subset_from_all,0.3333333333333333
18
+ X,160,GPN_final.LogisticRegression.chrom.subset_from_all,0.2111844289825459
mendelian_traits_matched_9/AUPRC_by_chrom/5_prime_UTR_variant/GPN_final_LLR.minus.score.csv ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,80,GPN_final_LLR.minus.score,0.3969771279936815
3
+ 2,30,GPN_final_LLR.minus.score,0.4772727272727273
4
+ 3,30,GPN_final_LLR.minus.score,0.2383838383838384
5
+ 5,20,GPN_final_LLR.minus.score,0.10555555555555556
6
+ 6,20,GPN_final_LLR.minus.score,0.5
7
+ 7,20,GPN_final_LLR.minus.score,1.0
8
+ 9,40,GPN_final_LLR.minus.score,0.279004329004329
9
+ 10,110,GPN_final_LLR.minus.score,0.1266182568118525
10
+ 11,230,GPN_final_LLR.minus.score,0.633999244890096
11
+ 12,10,GPN_final_LLR.minus.score,1.0
12
+ 13,70,GPN_final_LLR.minus.score,0.32905619454628754
13
+ 14,20,GPN_final_LLR.minus.score,0.5769230769230769
14
+ 17,20,GPN_final_LLR.minus.score,1.0
15
+ 19,260,GPN_final_LLR.minus.score,0.964492260098489
16
+ 20,10,GPN_final_LLR.minus.score,0.5
17
+ 22,10,GPN_final_LLR.minus.score,1.0
18
+ X,160,GPN_final_LLR.minus.score,0.502673230308001
mendelian_traits_matched_9/AUPRC_by_chrom/all/Borzoi_L2_L2.plus.all.csv ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,210,Borzoi_L2_L2.plus.all,0.28886296587880606
3
+ 2,230,Borzoi_L2_L2.plus.all,0.3596067340285779
4
+ 3,310,Borzoi_L2_L2.plus.all,0.3141818502385483
5
+ 5,20,Borzoi_L2_L2.plus.all,0.5666666666666667
6
+ 6,30,Borzoi_L2_L2.plus.all,0.9166666666666665
7
+ 7,210,Borzoi_L2_L2.plus.all,0.15898801542962734
8
+ 8,70,Borzoi_L2_L2.plus.all,0.18653789713111749
9
+ 9,240,Borzoi_L2_L2.plus.all,0.33766394392002164
10
+ 10,190,Borzoi_L2_L2.plus.all,0.2734856856956791
11
+ 11,480,Borzoi_L2_L2.plus.all,0.4786882293956932
12
+ 12,30,Borzoi_L2_L2.plus.all,0.6031746031746031
13
+ 13,210,Borzoi_L2_L2.plus.all,0.6413315208647058
14
+ 14,40,Borzoi_L2_L2.plus.all,0.11122362357506668
15
+ 16,80,Borzoi_L2_L2.plus.all,0.6892002296414061
16
+ 17,60,Borzoi_L2_L2.plus.all,0.44615624027388734
17
+ 19,400,Borzoi_L2_L2.plus.all,0.3618180913198451
18
+ 20,50,Borzoi_L2_L2.plus.all,0.5916666666666667
19
+ 22,20,Borzoi_L2_L2.plus.all,1.0
20
+ X,500,Borzoi_L2_L2.plus.all,0.6999088348317529
mendelian_traits_matched_9/AUPRC_by_chrom/all/CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.csv ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,210,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom,0.4855946002421491
3
+ 2,230,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom,0.8955067691024454
4
+ 3,310,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom,0.85862068880898
5
+ 5,20,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom,0.5
6
+ 6,30,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom,0.7777777777777777
7
+ 7,210,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom,0.8481206549921971
8
+ 8,70,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom,0.6097960923499834
9
+ 9,240,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom,0.8975611588976531
10
+ 10,190,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom,0.4841439547412863
11
+ 11,480,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom,0.7075764354113238
12
+ 12,30,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom,1.0
13
+ 13,210,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom,0.7211992137936225
14
+ 14,40,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom,0.29
15
+ 16,80,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom,1.0
16
+ 17,60,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom,0.5147907647907648
17
+ 19,400,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom,0.6952124444401682
18
+ 20,50,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom,0.911111111111111
19
+ 22,20,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom,1.0
20
+ X,500,CADD+GPN-MSA+Borzoi.LogisticRegression.chrom,0.7544007068580927
mendelian_traits_matched_9/AUPRC_by_chrom/all/CADD.LogisticRegression.chrom.csv ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,210,CADD.LogisticRegression.chrom,0.7257063596694239
3
+ 2,230,CADD.LogisticRegression.chrom,0.9665197806502153
4
+ 3,310,CADD.LogisticRegression.chrom,0.9765572908840108
5
+ 5,20,CADD.LogisticRegression.chrom,0.5833333333333333
6
+ 6,30,CADD.LogisticRegression.chrom,0.5555555555555556
7
+ 7,210,CADD.LogisticRegression.chrom,0.9736575481256333
8
+ 8,70,CADD.LogisticRegression.chrom,0.9999999999999998
9
+ 9,240,CADD.LogisticRegression.chrom,0.8931227978240486
10
+ 10,190,CADD.LogisticRegression.chrom,0.6794411550535855
11
+ 11,480,CADD.LogisticRegression.chrom,0.7848866173238882
12
+ 12,30,CADD.LogisticRegression.chrom,1.0
13
+ 13,210,CADD.LogisticRegression.chrom,0.8328422160569686
14
+ 14,40,CADD.LogisticRegression.chrom,0.40929487179487173
15
+ 16,80,CADD.LogisticRegression.chrom,0.6176300125313283
16
+ 17,60,CADD.LogisticRegression.chrom,0.8787878787878787
17
+ 19,400,CADD.LogisticRegression.chrom,0.9651715371679048
18
+ 20,50,CADD.LogisticRegression.chrom,0.9666666666666666
19
+ 22,20,CADD.LogisticRegression.chrom,1.0
20
+ X,500,CADD.LogisticRegression.chrom,0.9562419987319039
mendelian_traits_matched_9/AUPRC_by_chrom/all/Caduceus_InnerProduct.minus.score.csv ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,210,Caduceus_InnerProduct.minus.score,0.15135674297515564
3
+ 2,230,Caduceus_InnerProduct.minus.score,0.1868821054855781
4
+ 3,310,Caduceus_InnerProduct.minus.score,0.12523641541148628
5
+ 5,20,Caduceus_InnerProduct.minus.score,0.5714285714285714
6
+ 6,30,Caduceus_InnerProduct.minus.score,0.148109243697479
7
+ 7,210,Caduceus_InnerProduct.minus.score,0.1362992099214087
8
+ 8,70,Caduceus_InnerProduct.minus.score,0.07273278680908898
9
+ 9,240,Caduceus_InnerProduct.minus.score,0.17812601057698604
10
+ 10,190,Caduceus_InnerProduct.minus.score,0.08541813058340143
11
+ 11,480,Caduceus_InnerProduct.minus.score,0.06924122946357933
12
+ 12,30,Caduceus_InnerProduct.minus.score,0.7192982456140351
13
+ 13,210,Caduceus_InnerProduct.minus.score,0.12148482624527741
14
+ 14,40,Caduceus_InnerProduct.minus.score,0.10082877648667121
15
+ 16,80,Caduceus_InnerProduct.minus.score,0.40122100122100124
16
+ 17,60,Caduceus_InnerProduct.minus.score,0.12892854991366287
17
+ 19,400,Caduceus_InnerProduct.minus.score,0.1264037656719949
18
+ 20,50,Caduceus_InnerProduct.minus.score,0.12513960113960115
19
+ 22,20,Caduceus_InnerProduct.minus.score,0.08496732026143791
20
+ X,500,Caduceus_InnerProduct.minus.score,0.07633369589997713
mendelian_traits_matched_9/AUPRC_by_chrom/all/Enformer_L2_L2.plus.all.csv ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,210,Enformer_L2_L2.plus.all,0.30910416369871774
3
+ 2,230,Enformer_L2_L2.plus.all,0.4665020402459719
4
+ 3,310,Enformer_L2_L2.plus.all,0.3772700312335094
5
+ 5,20,Enformer_L2_L2.plus.all,0.6111111111111112
6
+ 6,30,Enformer_L2_L2.plus.all,0.38690476190476186
7
+ 7,210,Enformer_L2_L2.plus.all,0.17136377598150415
8
+ 8,70,Enformer_L2_L2.plus.all,0.33039923039923036
9
+ 9,240,Enformer_L2_L2.plus.all,0.4707809746637138
10
+ 10,190,Enformer_L2_L2.plus.all,0.29224749578941595
11
+ 11,480,Enformer_L2_L2.plus.all,0.38908372344555386
12
+ 12,30,Enformer_L2_L2.plus.all,0.6055555555555555
13
+ 13,210,Enformer_L2_L2.plus.all,0.5714071309956235
14
+ 14,40,Enformer_L2_L2.plus.all,0.09039638792928267
15
+ 16,80,Enformer_L2_L2.plus.all,0.5297491039426523
16
+ 17,60,Enformer_L2_L2.plus.all,0.31738302958130543
17
+ 19,400,Enformer_L2_L2.plus.all,0.31874993963198545
18
+ 20,50,Enformer_L2_L2.plus.all,0.81
19
+ 22,20,Enformer_L2_L2.plus.all,1.0
20
+ X,500,Enformer_L2_L2.plus.all,0.5899634261163853
mendelian_traits_matched_9/AUPRC_by_chrom/all/GPN-MSA+Borzoi.LogisticRegression.chrom.csv ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,210,GPN-MSA+Borzoi.LogisticRegression.chrom,0.4665653878589111
3
+ 2,230,GPN-MSA+Borzoi.LogisticRegression.chrom,0.6974294876980431
4
+ 3,310,GPN-MSA+Borzoi.LogisticRegression.chrom,0.6893854062107326
5
+ 5,20,GPN-MSA+Borzoi.LogisticRegression.chrom,0.5833333333333333
6
+ 6,30,GPN-MSA+Borzoi.LogisticRegression.chrom,0.7777777777777777
7
+ 7,210,GPN-MSA+Borzoi.LogisticRegression.chrom,0.9443677975483502
8
+ 8,70,GPN-MSA+Borzoi.LogisticRegression.chrom,0.5006257631257631
9
+ 9,240,GPN-MSA+Borzoi.LogisticRegression.chrom,0.8632795897330172
10
+ 10,190,GPN-MSA+Borzoi.LogisticRegression.chrom,0.4095311295991844
11
+ 11,480,GPN-MSA+Borzoi.LogisticRegression.chrom,0.6695885745416353
12
+ 12,30,GPN-MSA+Borzoi.LogisticRegression.chrom,1.0
13
+ 13,210,GPN-MSA+Borzoi.LogisticRegression.chrom,0.6455189351099319
14
+ 14,40,GPN-MSA+Borzoi.LogisticRegression.chrom,0.32453703703703707
15
+ 16,80,GPN-MSA+Borzoi.LogisticRegression.chrom,1.0
16
+ 17,60,GPN-MSA+Borzoi.LogisticRegression.chrom,0.4469405539993775
17
+ 19,400,GPN-MSA+Borzoi.LogisticRegression.chrom,0.8468649544703379
18
+ 20,50,GPN-MSA+Borzoi.LogisticRegression.chrom,0.9666666666666666
19
+ 22,20,GPN-MSA+Borzoi.LogisticRegression.chrom,1.0
20
+ X,500,GPN-MSA+Borzoi.LogisticRegression.chrom,0.8018668012712885
mendelian_traits_matched_9/AUPRC_by_chrom/all/GPN_final_Embeddings.plus.cosine_distance.csv ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,210,GPN_final_Embeddings.plus.cosine_distance,0.21575611839392667
3
+ 2,230,GPN_final_Embeddings.plus.cosine_distance,0.6008864942095543
4
+ 3,310,GPN_final_Embeddings.plus.cosine_distance,0.1462201255185057
5
+ 5,20,GPN_final_Embeddings.plus.cosine_distance,0.26666666666666666
6
+ 6,30,GPN_final_Embeddings.plus.cosine_distance,0.1267543859649123
7
+ 7,210,GPN_final_Embeddings.plus.cosine_distance,0.24397501979302053
8
+ 8,70,GPN_final_Embeddings.plus.cosine_distance,0.10920726355058152
9
+ 9,240,GPN_final_Embeddings.plus.cosine_distance,0.13181656915996764
10
+ 10,190,GPN_final_Embeddings.plus.cosine_distance,0.17926134964202034
11
+ 11,480,GPN_final_Embeddings.plus.cosine_distance,0.1689561588765799
12
+ 12,30,GPN_final_Embeddings.plus.cosine_distance,0.25111111111111106
13
+ 13,210,GPN_final_Embeddings.plus.cosine_distance,0.3448736741606843
14
+ 14,40,GPN_final_Embeddings.plus.cosine_distance,0.11314310689310689
15
+ 16,80,GPN_final_Embeddings.plus.cosine_distance,0.3133924424005946
16
+ 17,60,GPN_final_Embeddings.plus.cosine_distance,0.31800144300144295
17
+ 19,400,GPN_final_Embeddings.plus.cosine_distance,0.21764854907341075
18
+ 20,50,GPN_final_Embeddings.plus.cosine_distance,0.25990829346092503
19
+ 22,20,GPN_final_Embeddings.plus.cosine_distance,0.5833333333333333
20
+ X,500,GPN_final_Embeddings.plus.cosine_distance,0.4125079658166293
mendelian_traits_matched_9/AUPRC_by_chrom/all/GPN_final_EuclideanDistance.plus.score.csv ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,210,GPN_final_EuclideanDistance.plus.score,0.2472531374032194
3
+ 2,230,GPN_final_EuclideanDistance.plus.score,0.3513113012236947
4
+ 3,310,GPN_final_EuclideanDistance.plus.score,0.1521004276323123
5
+ 5,20,GPN_final_EuclideanDistance.plus.score,1.0
6
+ 6,30,GPN_final_EuclideanDistance.plus.score,0.31313131313131315
7
+ 7,210,GPN_final_EuclideanDistance.plus.score,0.216792071616217
8
+ 8,70,GPN_final_EuclideanDistance.plus.score,0.14424746028808658
9
+ 9,240,GPN_final_EuclideanDistance.plus.score,0.11554998898022437
10
+ 10,190,GPN_final_EuclideanDistance.plus.score,0.15000800904075123
11
+ 11,480,GPN_final_EuclideanDistance.plus.score,0.31419135278227406
12
+ 12,30,GPN_final_EuclideanDistance.plus.score,0.5625
13
+ 13,210,GPN_final_EuclideanDistance.plus.score,0.4865895015584955
14
+ 14,40,GPN_final_EuclideanDistance.plus.score,0.14014408793820557
15
+ 16,80,GPN_final_EuclideanDistance.plus.score,0.44501358695652177
16
+ 17,60,GPN_final_EuclideanDistance.plus.score,0.6383351790328534
17
+ 19,400,GPN_final_EuclideanDistance.plus.score,0.3277624422411202
18
+ 20,50,GPN_final_EuclideanDistance.plus.score,0.5903703703703704
19
+ 22,20,GPN_final_EuclideanDistance.plus.score,0.5833333333333333
20
+ X,500,GPN_final_EuclideanDistance.plus.score,0.6598823658035229
mendelian_traits_matched_9/AUPRC_by_chrom/all/NucleotideTransformer_Embeddings.plus.cosine_distance.csv ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,210,NucleotideTransformer_Embeddings.plus.cosine_distance,0.11957111405091744
3
+ 2,230,NucleotideTransformer_Embeddings.plus.cosine_distance,0.3404828478859399
4
+ 3,310,NucleotideTransformer_Embeddings.plus.cosine_distance,0.07269516850757896
5
+ 5,20,NucleotideTransformer_Embeddings.plus.cosine_distance,0.41666666666666663
6
+ 6,30,NucleotideTransformer_Embeddings.plus.cosine_distance,0.4769230769230769
7
+ 7,210,NucleotideTransformer_Embeddings.plus.cosine_distance,0.1727256019842142
8
+ 8,70,NucleotideTransformer_Embeddings.plus.cosine_distance,0.09760584488370529
9
+ 9,240,NucleotideTransformer_Embeddings.plus.cosine_distance,0.10156282440755714
10
+ 10,190,NucleotideTransformer_Embeddings.plus.cosine_distance,0.13707312377202724
11
+ 11,480,NucleotideTransformer_Embeddings.plus.cosine_distance,0.1665377052633933
12
+ 12,30,NucleotideTransformer_Embeddings.plus.cosine_distance,0.19771241830065361
13
+ 13,210,NucleotideTransformer_Embeddings.plus.cosine_distance,0.10330033966650339
14
+ 14,40,NucleotideTransformer_Embeddings.plus.cosine_distance,0.1579861111111111
15
+ 16,80,NucleotideTransformer_Embeddings.plus.cosine_distance,0.3548751187537953
16
+ 17,60,NucleotideTransformer_Embeddings.plus.cosine_distance,0.14038946355320084
17
+ 19,400,NucleotideTransformer_Embeddings.plus.cosine_distance,0.23703158827958531
18
+ 20,50,NucleotideTransformer_Embeddings.plus.cosine_distance,0.14201923076923076
19
+ 22,20,NucleotideTransformer_Embeddings.plus.cosine_distance,0.26785714285714285
20
+ X,500,NucleotideTransformer_Embeddings.plus.cosine_distance,0.2544650875483345
mendelian_traits_matched_9/AUPRC_by_chrom/non_coding_transcript_exon_variant/GPN_final_LLR.minus.score.csv ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 2,150,GPN_final_LLR.minus.score,0.12009523359276793
3
+ 3,250,GPN_final_LLR.minus.score,0.1462924533734105
4
+ 9,200,GPN_final_LLR.minus.score,0.08608880730701247
5
+ 11,40,GPN_final_LLR.minus.score,0.5317982456140351
6
+ 13,30,GPN_final_LLR.minus.score,1.0
7
+ 19,10,GPN_final_LLR.minus.score,0.25
8
+ 22,10,GPN_final_LLR.minus.score,0.25
9
+ X,20,GPN_final_LLR.minus.score,0.6428571428571428
mendelian_traits_matched_9/AUPRC_by_chrom/nonexonic_AND_proximal/GPN_final_LLR.minus.score.csv ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ chrom,n,Model,AUPRC
2
+ 1,70,GPN_final_LLR.minus.score,0.32663947248501335
3
+ 10,30,GPN_final_LLR.minus.score,0.14215686274509803
4
+ 11,110,GPN_final_LLR.minus.score,0.4512943392233827
5
+ 12,10,GPN_final_LLR.minus.score,1.0
6
+ 13,70,GPN_final_LLR.minus.score,0.5601790101790102
7
+ 16,10,GPN_final_LLR.minus.score,0.125
8
+ 17,30,GPN_final_LLR.minus.score,0.17735042735042736
9
+ 19,130,GPN_final_LLR.minus.score,0.836111111111111
10
+ 2,50,GPN_final_LLR.minus.score,1.0
11
+ 20,40,GPN_final_LLR.minus.score,0.7934782608695652
12
+ 3,10,GPN_final_LLR.minus.score,1.0
13
+ 6,10,GPN_final_LLR.minus.score,0.16666666666666666
14
+ 7,20,GPN_final_LLR.minus.score,0.41666666666666663
15
+ 8,50,GPN_final_LLR.minus.score,0.27698901098901096
16
+ X,260,GPN_final_LLR.minus.score,0.7217791333956219
mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/3_prime_UTR_variant/GPN_final.LogisticRegression.chrom.subset_from_all.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ model,metric,score,se
2
+ GPN_final.LogisticRegression.chrom.subset_from_all,AUPRC,0.23389321928581175,0.034673117024992504
mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/3_prime_UTR_variant/GPN_final_LLR.minus.score.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ model,metric,score,se
2
+ GPN_final_LLR.minus.score,AUPRC,0.21837515829843088,0.04843572997630987
mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/Borzoi.LogisticRegression.chrom.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ model,metric,score,se
2
+ Borzoi.LogisticRegression.chrom,AUPRC,0.49298026682825974,0.03387962392290682
mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/Borzoi_L2_L2.plus.all.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ model,metric,score,se
2
+ Borzoi_L2_L2.plus.all,AUPRC,0.4355656136169956,0.051597004283321764
mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/CADD+Borzoi.LogisticRegression.chrom.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ model,metric,score,se
2
+ CADD+Borzoi.LogisticRegression.chrom,AUPRC,0.7567548643334822,0.02800090306412582
mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/CADD+GPN-MSA+Borzoi.LogisticRegression.chrom.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ model,metric,score,se
2
+ CADD+GPN-MSA+Borzoi.LogisticRegression.chrom,AUPRC,0.739661869792865,0.03341660529784681
mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/CADD.LogisticRegression.chrom.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ model,metric,score,se
2
+ CADD.LogisticRegression.chrom,AUPRC,0.8746598261796723,0.03053334830628915
mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/CADD.plus.RawScore.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ model,metric,score,se
2
+ CADD.plus.RawScore,AUPRC,0.7121847808331817,0.038447877158699226
mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/Caduceus_Embeddings.minus.inner_product.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ model,metric,score,se
2
+ Caduceus_Embeddings.minus.inner_product,AUPRC,0.131076433348165,0.016254752195469967
mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/Caduceus_Embeddings.plus.cosine_distance.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ model,metric,score,se
2
+ Caduceus_Embeddings.plus.cosine_distance,AUPRC,0.13455900406076435,0.010093335540829028
mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/Enformer.LogisticRegression.chrom.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ model,metric,score,se
2
+ Enformer.LogisticRegression.chrom,AUPRC,0.4457897978393392,0.037976767408547156
mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/GPN-MSA+Borzoi.LogisticRegression.chrom.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ model,metric,score,se
2
+ GPN-MSA+Borzoi.LogisticRegression.chrom,AUPRC,0.7219609968170422,0.040220160541453186
mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/GPN-MSA_Embeddings.minus.inner_product.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ model,metric,score,se
2
+ GPN-MSA_Embeddings.minus.inner_product,AUPRC,0.30112523795743745,0.03168988753882798
mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/GPN-MSA_Embeddings.plus.cosine_distance.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ model,metric,score,se
2
+ GPN-MSA_Embeddings.plus.cosine_distance,AUPRC,0.20800225756771223,0.02098808509797134
mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/GPN-MSA_Embeddings.plus.euclidean_distance.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ model,metric,score,se
2
+ GPN-MSA_Embeddings.plus.euclidean_distance,AUPRC,0.2069238590320193,0.020884292254464948
mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/GPN-MSA_InnerProduct.minus.score.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ model,metric,score,se
2
+ GPN-MSA_InnerProduct.minus.score,AUPRC,0.3011219010690259,0.031689359724673793
mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/GPN-MSA_LLR.minus.score.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ model,metric,score,se
2
+ GPN-MSA_LLR.minus.score,AUPRC,0.6944749707632801,0.0419068884991881
mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/GPN-MSA_absLLR.plus.score.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ model,metric,score,se
2
+ GPN-MSA_absLLR.plus.score,AUPRC,0.654222678718318,0.044972926205583436
mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/GPN_final.LogisticRegression.chrom.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ model,metric,score,se
2
+ GPN_final.LogisticRegression.chrom,AUPRC,0.35284494920222204,0.0583212250339244
mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/GPN_final_Embeddings.plus.cosine_distance.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ model,metric,score,se
2
+ GPN_final_Embeddings.plus.cosine_distance,AUPRC,0.26339060037943085,0.03821887033915233
mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/GPN_final_InnerProduct.minus.score.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ model,metric,score,se
2
+ GPN_final_InnerProduct.minus.score,AUPRC,0.16922307246758078,0.047496210894077816
mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/GPN_final_LLR.minus.score.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ model,metric,score,se
2
+ GPN_final_LLR.minus.score,AUPRC,0.4216763931462392,0.0696638713065584
mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/GPN_final_absLLR.plus.score.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ model,metric,score,se
2
+ GPN_final_absLLR.plus.score,AUPRC,0.3788158878953516,0.06863303003742684
mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/HyenaDNA.LogisticRegression.chrom.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ model,metric,score,se
2
+ HyenaDNA.LogisticRegression.chrom,AUPRC,0.14564822190132384,0.013889472455416422
mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/HyenaDNA_Embeddings.minus.inner_product.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ model,metric,score,se
2
+ HyenaDNA_Embeddings.minus.inner_product,AUPRC,0.16481698661406813,0.031015495478498096
mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/HyenaDNA_Embeddings.plus.cosine_distance.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ model,metric,score,se
2
+ HyenaDNA_Embeddings.plus.cosine_distance,AUPRC,0.116403099062234,0.013540904520628455
mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/HyenaDNA_Embeddings.plus.euclidean_distance.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ model,metric,score,se
2
+ HyenaDNA_Embeddings.plus.euclidean_distance,AUPRC,0.11689260373905239,0.014477215207015169
mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/HyenaDNA_InnerProduct.minus.score.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ model,metric,score,se
2
+ HyenaDNA_InnerProduct.minus.score,AUPRC,0.164816865284936,0.03101554926698257
mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/HyenaDNA_LLR.minus.score.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ model,metric,score,se
2
+ HyenaDNA_LLR.minus.score,AUPRC,0.1152052872349429,0.006084103442958281
mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/NucleotideTransformer_Embeddings.minus.inner_product.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ model,metric,score,se
2
+ NucleotideTransformer_Embeddings.minus.inner_product,AUPRC,0.18491586645094094,0.03892242955424739
mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/NucleotideTransformer_Embeddings.plus.cosine_distance.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ model,metric,score,se
2
+ NucleotideTransformer_Embeddings.plus.cosine_distance,AUPRC,0.18559760988782165,0.02214462833081281
mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/NucleotideTransformer_InnerProduct.minus.score.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ model,metric,score,se
2
+ NucleotideTransformer_InnerProduct.minus.score,AUPRC,0.18486365621773523,0.03888299929015381
mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/all/NucleotideTransformer_absLLR.plus.score.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ model,metric,score,se
2
+ NucleotideTransformer_absLLR.plus.score,AUPRC,0.0980640932373892,0.006411086678697549
mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/no_cadd_overlap/Borzoi_L2_L2.plus.all.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ model,metric,score,se
2
+ Borzoi_L2_L2.plus.all,AUPRC,0.42077578278371996,0.056588693438561044
mendelian_traits_matched_9/AUPRC_by_chrom_weighted_average/no_cadd_overlap/CADD.LogisticRegression.chrom.subset_from_all.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ model,metric,score,se
2
+ CADD.LogisticRegression.chrom.subset_from_all,AUPRC,0.8726172101949277,0.03181353647521414