gonzalobenegas commited on
Commit
9a93c79
·
verified ·
1 Parent(s): f538a6d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +45 -1
README.md CHANGED
@@ -24,7 +24,7 @@ configs:
24
  path: "complex_traits_all/test.parquet"
25
  ---
26
  # 🧬 TraitGym
27
- [Benchmarking DNA Sequence Models for Causal Regulatory Variant Prediction in Human Genetics](https://www.biorxiv.org/content/10.1101/2025.02.11.637758v1)
28
 
29
  🏆 Leaderboard: https://huggingface.co/spaces/songlab/TraitGym-leaderboard
30
 
@@ -74,6 +74,50 @@ configs:
74
  - Tries to follow [recommended Snakemake structure](https://snakemake.readthedocs.io/en/stable/snakefiles/deployment.html)
75
  - GPN-Promoter code is in [the main GPN repo](https://github.com/songlab-cal/gpn)
76
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77
  ## Citation
78
  [Link to paper](https://www.biorxiv.org/content/10.1101/2025.02.11.637758v1)
79
  ```bibtex
 
24
  path: "complex_traits_all/test.parquet"
25
  ---
26
  # 🧬 TraitGym
27
+ [Benchmarking DNA Sequence Models for Causal Regulatory Variant Prediction in Human Genetics](https://www.biorxiv.org/content/10.1101/2025.02.11.637758v1)
28
 
29
  🏆 Leaderboard: https://huggingface.co/spaces/songlab/TraitGym-leaderboard
30
 
 
74
  - Tries to follow [recommended Snakemake structure](https://snakemake.readthedocs.io/en/stable/snakefiles/deployment.html)
75
  - GPN-Promoter code is in [the main GPN repo](https://github.com/songlab-cal/gpn)
76
 
77
+ ### Installation
78
+ First, clone the repo and `cd` into it.
79
+ Second, install the dependencies:
80
+ ```bash
81
+ conda env create -f workflow/envs/general.yaml
82
+ conda activate TraitGym
83
+ ```
84
+ Optionally, download precomputed datasets and predictions (6.7G):
85
+ ```bash
86
+ mkdir -p results/dataset
87
+ huggingface-cli download songlab/TraitGym --repo-type dataset --local-dir results/dataset/
88
+ ```
89
+
90
+ ### Running
91
+ To compute a specific result, specify its path:
92
+ ```bash
93
+ snakemake --cores all <path>
94
+ ```
95
+ Example paths (these are already computed):
96
+ ```bash
97
+ # zero-shot LLR
98
+ results/dataset/complex_traits_matched_9/AUPRC_by_chrom_weighted_average/all/GPN-MSA_absLLR.plus.score.csv
99
+ # logistic regression/linear probing
100
+ results/dataset/complex_traits_matched_9/AUPRC_by_chrom_weighted_average/all/GPN-MSA.LogisticRegression.chrom.csv
101
+ ```
102
+ We recommend the following:
103
+ ```bash
104
+ # Snakemake sometimes gets confused about which files it needs to rerun and this forces
105
+ # not to rerun any existing file
106
+ snakemake --cores all <path> --touch
107
+ # to output an execution plan
108
+ snakemake --cores all <path> --dry-run
109
+ ```
110
+ To evaluate your own set of model features, place a dataframe of shape `n_variants,n_features` in `results/dataset/{dataset}/features/{features}.parquet`.
111
+ For zero-shot evaluation of column `{feature}` and sign `{sign}` (`plus` or `minus`), you would invoke:
112
+ ```bash
113
+ snakemake --cores all results/dataset/{dataset}/{metric}/all/{features}.{sign}.{feature}.csv
114
+ ```
115
+ To train and evaluate a logistic regression model, you would invoke:
116
+ ```bash
117
+ snakemake --cores all results/dataset/{dataset}/{metric}/all/{feature_set}.LogisticRegression.chrom.csv
118
+ ```
119
+ where `{feature_set}` should first be defined in `feature_sets` in `config/config.yaml` (this allows combining features defined in different files).
120
+
121
  ## Citation
122
  [Link to paper](https://www.biorxiv.org/content/10.1101/2025.02.11.637758v1)
123
  ```bibtex