
ll
Perspective

Artificial intelligence for clinical oncology
Benjamin H. Kann,1,2 Ahmed Hosny,1,2 and Hugo J.W.L. Aerts1,2,3,4,*
1Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Harvard Institutes of Medicine – HIM 343,
77 Avenue Louis Pasteur, Boston, MA 02115, USA
2Department of Radiation Oncology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston,
MA, USA
3Department of Radiology, Brigham and Women’s Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
4Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, Maastricht, the Netherlands
*Correspondence: haerts@bwh.harvard.edu
https://doi.org/10.1016/j.ccell.2021.04.002

SUMMARY

Clinical oncology is experiencing rapid growth in data that are collected to enhance cancer care. With recent
advances in the field of artificial intelligence (AI), there is now a computational basis to integrate and synthe-
size this growing body of multi-dimensional data, deduce patterns, and predict outcomes to improve shared
patient and clinician decision making. While there is high potential, significant challenges remain. In this
perspective, we propose a pathway of clinical cancer care touchpoints for narrow-task AI applications
and review a selection of applications. We describe the challenges faced in the clinical translation of AI
and propose solutions. We also suggest paths forward in weaving AI into individualized patient care, with
an emphasis on clinical validity, utility, and usability. By illuminating these issues in the context of current
AI applications for clinical oncology, we hope to help advance meaningful investigations that will ultimately
translate to real-world clinical use.
INTRODUCTION

Over the last decade, there has been a resurgence of interest in

artificial intelligence (AI) applications in medicine. This is driven

by the advent of deep-learning algorithms, computing hardware

advances, and the exponential growth of data that are being

generated and used for clinical decision making (Esteva et al.,

2019; Kann et al., 2020a; LeCun et al., 2015). Oncology is partic-

ularly poised for transformative changes brought on by AI, given

the proven advantages of individualized care and recognition

that tumors and their response rates differ vastly from person

to person (Marusyk et al., 2012; Schilsky, 2010). In oncology,

much like othermedical fields, the overarching goal is to increase

quantity and quality of life, which, from a practical standpoint,

entails choosing themanagement strategy that optimizes cancer

control and minimizes toxicity.

As multi-dimensional data are increasingly being generated in

routine care, AI can support clinicians to form an individualized

viewof apatient along their carepathwayandultimatelyguideclin-

ical decisions. These decisions rely on the incorporation of dispa-

rate, complexdatastreams, includingclinical presentation, patient

history, tumor pathology, and genomics, as well as medical imag-

ing, and marrying these data to the findings of an ever-growing

body of scientific literature. Furthermore, these data streams are

in a constant state of flux over the course of a patient’s trajectory.

With the emergence of AI, specifically deep learning (LeCun et al.,

2015), there is now a computational basis to integrate and synthe-

size these data to predict where the patient’s care path is headed

and ultimately improve management decisions.

While there is much reason to be hopeful, numerous chal-

lenges remain to the successful integration of AI in clinical
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oncology. In analyzing these challenges, it is critical to view the

promise, success, and failure of AI not only in generalities but

on a clinical case-by-case basis. Not every cancer problem is

a nail to AI’s hammer; its value is not universal, but inextricably

linked to the clinical use case (Maddox et al., 2019). The current

evidence suggests that clinical translation of the vast majority of

published, high-performing AI algorithms remains in a nascent

stage (Nagendran et al., 2020). Furthermore, we posit that the

imminent value of AI in clinical oncology is in the aggregation

of narrow-task-specific, clinically validated, and meaningful ap-

plications at clinical ‘‘touchpoints’’ along the cancer care

pathway, rather than general, all-purpose AI for end-to-end de-

cision making. As the global cancer incidence increases and

the financial toxicity of cancer care is increasingly recognized,

many societies are moving toward value-based care systems

(Porter, 2009; Yousuf Zafar, 2016). With development of these

systems, there will be increasing incentive for the adoption of

data-driven tools—potentially powered by AI—that can lead to

reduced patient morbidity, mortality, and healthcare costs (Kuz-

nar, 2015).

Here, we describe the key concepts of AI in clinical

oncology and review a selection of AI applications in

oncology from the lens of a patient moving through clinical

touchpoints along the cancer care path. We therein describe

the challenges faced in the clinical translation of AI and pro-

pose solutions, and finally suggest paths forward in weaving

AI into individualized patient cancer care. By illuminating

these issues in the context of current AI applications for

clinical oncology, we hope to provide concepts to help drive

meaningful investigations that will ultimately translate to real-

world clinical use.
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ARTIFICIAL INTELLIGENCE: FROM SHALLOW TO DEEP
LEARNING

The concept of AI, formalized in the 1950s, was originally

defined as the ability of a machine to perform a task normally

associated with human performance (Russell and Haller,

2003). Within this field the concept of machine learning was

born, which refers to an algorithm’s ability to learn data and

perform tasks without explicit programming (Samuel, 1959).

Machine-learning research has led to development and use

of a number of ‘‘shallow’’ learning algorithms, including earlier

generalized linear models such as logistic regression,

Bayesian algorithms, decision trees, and ensemble methods

(Bhattacharyya et al., 2019; Richens et al., 2020). In the

simplest of these models, such as logistic regression, input

variables are assumed to be independent of one another,

and individual weights are learned for each variable to deter-

mine a decision boundary that optimally separates classes of

labeled data. More advanced shallow learning algorithms,

such as random forests, allow for the characterization and

weighting of input variable combinations and relationships,

thus learning decision boundaries that can fit more com-

plex data.

Deep learning is a newer subset of machine learning that has

the ability to learn patterns from raw, unstructured input data by

incorporating layered neural networks (LeCun et al., 2015). In

supervised learning, which represents the most common form

within medical AI, a neural network will generate a prediction

from this input data and compare it with a ‘‘ground truth’’ anno-

tation. This discrepancy between prediction and ground truth is

encapsulated in a loss function, which is then propagated back

through the neural network, and over numerous cycles the

model is optimized to minimize this loss function.

For the purpose of clinical application, we can view AI as a

spectrum of algorithms, the utility of which are inextricably

linked to the characteristics of the task under investigation.

Thorough understanding of the data stream is necessary to

choose, develop, and optimize an algorithm. In general,

deep-learning networks offer nearly limitless flexibility in input,

output, and architectural and parameter design, and thus are

able to fit vast quantities of heterogeneous and unstructured

data never before possible (Esteva et al., 2017). Specifically,

deep learning has a high propensity to learn non-linear and

high-dimensional relationships in multi-modal data including

time series data, pixel-by-pixel imaging data, unstructured

text data, audio/video data, or biometric data. Data with signif-

icant spatial and temporal heterogeneity are particularly well

suited for deep-learning neural networks (Zhong et al., 2019).

On the other hand, this power comes at the expense of limited

interpretability and a proclivity for overfitting data if not trained

on a large, representative dataset (Zhu et al., 2015). While tradi-

tional machine learning and statistical modeling can perform

quite well at certain predictive tasks, they generally struggle

to fit unprocessed, unstructured, and high-dimensional data

compared with deep learning. Therefore, despite its limitations,

deep learning has opened the door to ‘‘big data’’ analysis in

oncology and promises to advance clinical oncology, as long

as certain pitfalls in development and implementation can be

overcome.
CANCER CARE AS A MATHEMATICAL OPTIMIZATION
PROBLEM

To appreciate the promise surrounding AI applications for clin-

ical oncology, it is essential to incorporate a mathematical lens

to the patient care path through cancer risk prediction,

screening, diagnosis, and treatment. From the AI perspective,

the patient path is an optimization problem, wherein heteroge-

neous data streams converge as inputs into a mathematical

scaffold (i.e., machine-learning algorithms) (Figure 1). This scaf-

fold is iteratively adjusted during training until the desired output

can be reliably predicted and an action can be taken. In this

setting, an ever-growing list of inputs includes patient clinical

presentation, past medical history, genomics, imaging, and bio-

metrics, and can be roughly subdivided as tumor, host, or envi-

ronmental factors. The complexity of the algorithms is often

driven by the quantity, heterogeneity, and dimensionality of

such data. Outputs are centered, most broadly, on increasing

survival and/or quality of life, but are often evaluated by neces-

sity as a series of more granular surrogate endpoints.

DATA STREAMS FOR CLINICAL ONCOLOGY

The arc of research in oncology, increasing data generation, and

advances in computational technology have collectively resulted

in a frameshift from low-dimensional to increasingly high-dimen-

sional patient data representation. Earlier data and computa-

tional limitations often necessitated reducing unstructured

patient data (e.g., medical images and biopsies) into a set of hu-

man-digestible discrete measures of disease extent. One

notable example of such simplification lies within cancer staging

systems, most prominently the American Joint Committee on

Cancer (AJCC) TNM classification (Amin et al., 2017). In 1977,

with only three inputs commonly available—tumor size, nodal

involvement, and presence ofmetastasis (TNM)—the first edition

of AJCC TNM staging became the standard of care for risk strat-

ification and decision management in oncology. Over the subse-

quent decades, with the incorporation of other discrete data

points, predictive nomograms could be generated using simple

linear models, which have found practical use in certain situa-

tions (Bari et al., 2010; Creutzberg et al., 2015; Mittendorf

et al., 2012; Stephenson et al., 2007). More recently, improved

methods to extract and analyze existing data coupled with

new data streams and a growing understanding of inter- and

intra-tumoral heterogeneity have all led to the development of

increasingly complex and specific stratification models. Key ex-

amples of novel data streams introduced over the past two de-

cades are the Electronic Health Record (EHR), The Cancer

Genome Atlas (Weinstein et al., 2013), The Cancer Imaging

Archive (Clark et al., 2013), and the Project GENIE initiative

(AACR Project GENIE Consortium, 2017). Key examples of

advanced risk stratification and prediction models are the pros-

tate cancer Decipher score (Erho et al., 2013) and breast cancer

OncotypeDx score (Paik et al., 2004), which utilize discrete

genomic data and shallow machine-learning algorithms to form

clinically validated predictive models. Useful oncology data

streams, roughly following historical order of availability, include

clinical presentation, tumor stage, histopathology, qualitative

imaging, tumor genomics, patient genomics, quantitative
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Figure 1. Narrow-task-specific AI applications addressing a specific cancer care touchpoint along the patient pathway, and utilizing a
specific data type and AI method
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imaging, liquid biopsies, electronic medical recordmining, wear-

able devices, and digital behavior (Figure 1). Furthermore, as a

patient moves along the cancer care pathway, the number of in-

fluxing, intra-patient data streams grows. With each step

through the pathway, new data are generated out of the pathway

with the potential to be reincorporated at a later time back into

the pathway (Figure 2).

As our biological knowledge base and data streams grow in

clinical oncology, machine-learning algorithms can be deployed

to learn patterns that apply to more and more precise patient

groups and generate predictions to guide treatment for the

next, ‘‘unseen’’ patient. As we assimilate more data, optimal

cancer care, i.e. the care that results in the best survival and

quality of life for a patient, inevitably becomes precision care,

assuming we have the necessary tools to fully utilize the data.

Here, at this intersection of data complexity and precision care

in clinical oncology, is where the promise of AI has been so tanta-

lizing, though as of yet unfulfilled.

AI APPLICATIONS AND TOUCHPOINTS ALONG THE
CLINICAL ONCOLOGY CARE PATH

We propose that AI development for clinical oncology should be

approached from patient and clinician perspectives across the

following cancer care touchpoints: Risk Prediction, Screening,

Diagnosis, Prognosis, Initial Treatment, Response Assessment,

Subsequent Treatment, and Follow-up (Figure 2). The clinical

touchpoint pathway shares features with the ‘‘cancer contin-

uum’’ (Chambers et al., 2018), although it consists of more gran-

ular patient and clinician decision-oriented points of contact for
918 Cancer Cell 39, July 12, 2021
AI to add clinical benefit. Each of these touchpoints involves a

critical series of decisions for oncologists and patients to make

and yields a use case for AI to provide an incremental benefit.

Furthermore, touchpoint details will vary by cancer subtype.

Within these touchpoints, ideal AI use cases are ones with signif-

icant unmet need and large available datasets. In the context of

supervised machine learning, these datasets require robust and

accurate annotation to form a reliable ‘‘ground truth’’ on which

the AI system can train.

NARROW TASKS WITH HIGH RELIABILITY

As clinical oncology data streams increase in complexity, the

tools needed to discern patterns from these data are necessarily

more complex. Amid this flood of heterogeneous intra-patient

data there is a relative dearth of inter-patient data, which is

needed to train large-scale models. Therefore, to accumulate

the training data required for generalizable models, it will likely

be more fruitful to target and evaluate individual AI models to-

ward specific data streams at a particular touchpoint along the

care pathway.

It is tempting to think that, given the increasing data streams

that encompass multiple patient characteristics and outcomes,

one could develop a unifying, dynamic model to synthesize

and drive precision oncology, developing a ‘‘virtual guide’’ of

sorts for the oncologist and patient (Topol, 2019). Analogies

are often made to transformative technologies, such as self-

driving cars and social media recommendations that leverage

powerful neural networks on top of streams composed of billions

of incoming data points, to predict real-time outcomes and
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Figure 2. An example cancer patient pathway converges with an ever-increasing data stream
Potential AI applications and exemplary clinical users at each touchpoint are also illustrated. PCP, primary care physician.
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continually improve performance. While in theory this strategy

could one day be deployed in a clinical setting, there are vast dif-

ferences between these domains that question whether or not

we should or even could pursue this strategy currently. One of

the most glaring differences between the healthcare and tech-

nology domains, in terms of AI application, is the striking differ-

ence in data quality and quantity. While there has been a sea

change in the collection of data within the healthcare field over

the past decade, driven by the adoption of the EHR, datasets still

remain virtually siloed, intensely regulated, and, particularly in

cancer care, much too small to leverage the most powerful AI al-

gorithms available (Bi et al., 2019; Kelly et al., 2019). One of the

most high-profile of these endeavors, IBM’s Watson Oncology

project, has attempted to develop a broad prediction machine

to guide cancer care, but has been limited by suboptimal

concordance with human oncologists’ recommendations and

subsequent distrust (Gyawali, 2018; Lee et al., 2018; Somashe-

khar et al., 2017).

As our biological perspective has evolved, we now know that

cancer is made up of thousands of distinct entities that will follow

different trajectories, each with different treatment strategies

(Dagogo-Jack and Shaw, 2018; Polyak, 2011). In computational

model development, there is thought to be a bareminimumnum-

ber of data samples required for eachmodel input feature (Mitsa,

2019). As we seek to make recommendations increasingly more

bespoke, it becomes more challenging to accrue the quantity of

training data necessary to leverage complex algorithms. Fortu-

nately, this data gap in healthcare is well recognized, and a num-

ber of initiatives have been proposed to streamline and unify data

collection (Wilkinson et al., 2016). However, given the innately

heterogeneous, fragmented, and private nature of healthcare

data, we in the oncology field may never achieve a level of

data robustness enjoyed by other technology sectors. Therefore,

strategies are necessary to mitigate the data problem, such as

proper algorithm selection, model architecture improvements,

data preprocessing, and data-augmentation techniques. Above
all, thoughtful selection of narrow use cases across cancer care

touchpoints is paramount in order to yield clinical impact.

Once rigorously tested, these narrow AI applications could

then be aggregated over the course of a patient’s care to provide

a measurable, clinical benefit. This sort of AI-driven dimension-

ality reduction of a patient’s feature space allows for optimizing

the development process of quality AI applications in the present

environment of siloed data, expertise, and infrastructure. As of

writing, there are approximately 20 Food and Drug Administra-

tion (FDA)-approved AI applications targeted specifically for clin-

ical oncology, and each of these performs a narrow task, utilizing

a single data stream at a specific cancer care touchpoint (Benja-

mens et al., 2020; Hamamoto et al., 2020; Topol, 2019) (Table 1).

We hypothesize that the future of AI in oncology will continue to

consist of an aggregation of rigorously evaluated, narrow-task

models, each one providing small, incremental benefits for pa-

tient quantity and quality of life. In the next sections, we review

select AI applications that have excelled with this narrow-task

approach.

NARROW-TASK AI EXAMPLES ACROSS THE CLINICAL
ONCOLOGY TOUCHPOINTS

T1. Risk prediction and prevention
Given the burden to people and healthcare systems of cancer

diagnosis and management, there is a significant opportunity

for AI to help predict an individual’s risk of developing cancer,

and thereby target screening and early interventions effectively

and efficiently. In a mathematical sense, the patient’s entire per-

sonal history up until diagnosis makes up a vast and extremely

heterogeneous data stream to be evaluated, positioning deep

learning to have an impact. This is evidenced by the steady

development of tools that leverage computational modeling to

refine cancer risk. In the past few years, several deep-learning al-

gorithms have been investigated to further tailor risk prediction

beyond traditional models. Some of these algorithms utilize
Cancer Cell 39, July 12, 2021 919



Table 1. FDA approvals to date for deep-learning applications in clinical oncology

Name Data type Task FDA summary Year

Thoracic/liver

1 Arterys Oncology DL CT, MRI segmentation of lung nodules

and liver lesions, automated

reporting

https://www.accessdata.fda.gov/

cdrh_docs/pdf17/K173542.pdf

2017

2 Siemens AI-Rad

Companion (Pulmonary)

CT segmentation of lesions of the

lung, liver, and lymph nodes

https://www.accessdata.fda.gov/

cdrh_docs/pdf18/K183271.pdf

2019

3 Riverain ClearRead CT CT detection of pulmonary nodules

in asymptomatic population

https://www.accessdata.fda.gov/

cdrh_docs/pdf16/k161201.pdf

2016

4 Siemens syngo.CT

Lung CAD

CT detection of solid pulmonary

nodules, alerts to overlooked

regions

https://www.accessdata.fda.gov/

cdrh_docs/pdf19/K193216.pdf

2020

5 GE Hepatic VCAR CT liver lesion segmentation and

measurement

https://www.accessdata.fda.gov/

cdrh_docs/pdf19/K193281.pdf

2020

6 Coreline AView LCS CT characterization of nodule type,

location, measurements, and

Lung-RADS category

https://www.accessdata.fda.gov/

cdrh_docs/pdf20/K201710.pdf

2020

7 MeVis Veolity CT detection of solid pulmonary

nodules, alerts to overlooked

regions

https://www.accessdata.fda.gov/

cdrh_docs/pdf20/K201501.pdf

2021

8 Philips Lung Nodule

Assessment and

Comparison Option (LNA)

CT characterization of nodule type,

location, and measurements

https://www.accessdata.fda.gov/

cdrh_docs/pdf16/K162484.pdf

2017

9 NinesMeasure CT characterization of nodule type,

location, and measurements

https://www.accessdata.fda.gov/

cdrh_docs/pdf20/K202990.pdf

2021

Breast

10 iCAD ProFound AI 3D DBT

mammography

detection of soft tissue densities

and calcifications

https://www.accessdata.fda.gov/

cdrh_docs/pdf19/K191994.pdf

2019

11 cmTriage 2D FFDM triage and passive notification https://www.accessdata.fda.gov/

cdrh_docs/pdf18/K183285.pdf

2019

12 Screenpoint Transpara FFDM detection of suspicious soft

tissue lesions and calcifications

https://www.accessdata.fda.gov/

cdrh_docs/pdf19/K192287.pdf

2019

13 Zebra Medical Vision

HealthMammo

2D FFDM triage and passive notification https://www.accessdata.fda.gov/

cdrh_docs/pdf20/K200905.pdf

2020

14 Koios DS for Breast ultrasonography classification of lesion shape,

orientation, and BI-RADS

category

https://www.accessdata.fda.gov/

cdrh_docs/pdf19/K190442.pdf

2019

15 Hologic Genius AI

Detection

DBT

mammography

detection of suspicious soft

tissue lesions and calcifications

https://www.accessdata.fda.gov/

cdrh_docs/pdf20/K201019.pdf

2020

16 Therapixel

MammoScreen

FFDM detection of suspicious findings

and level of suspicion

https://www.accessdata.fda.gov/

cdrh_docs/pdf19/K192854.pdf

2020

17 QuantX MRI image registration, automated

segmentation, and analysis of

user-selected regions of interest

https://www.accessdata.fda.gov/

cdrh_docs/reviews/DEN170022.pdf

2020

18 ClearView cCAD ultrasonography classification of shape and

orientation of user-defined

regions, and BI-RADS category

https://www.accessdata.fda.gov/

cdrh_docs/pdf16/K161959.pdf

2016

Prostate

19 Quantib Prostate MRI semi-automatic segmentation

of anatomic structures,

volume computations,

automated PI-RADS category

https://www.accessdata.fda.gov/

cdrh_docs/pdf20/K202501.pdf

2020

20 GE PROView MRI prediction of PI-RADS category https://www.accessdata.fda.gov/

cdrh_docs/pdf19/K193306.pdf

2020

(Continued on next page)
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Table 1. Continued

Name Data type Task FDA summary Year

Central nervous system

21 Cortechs NeuroQuant MRI automated segmentation and

volumetric quantification of

brain lesions

https://www.accessdata.fda.gov/

cdrh_docs/pdf17/K170981.pdf

2017

DBT, digital breast tomosynthesis; FFDM, full-field digital mammography; BI-RADS, Breast Imaging Reporting and Data System; PI-RADS, Prostate

Imaging Reporting and Data System.
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novel data streams that were not available until recently: satellite

imagery (Bibault et al., 2020), internet search history (White and

Horvitz, 2017), and wearable devices (Beg et al., 2017). Others

maximize the utility of pre-existing data streams, including pa-

tient genomics, routine imaging, unstructured health record

data, and deeper family history to improve predictions (Ming

et al., 2020).

T2. Screening
Cancer screening involves the input and evaluation of data at a

distinct time point to determine whether or not additional diag-

nostic testing and procedures are warranted. Data streams can

be in the form of serum markers, medical imaging, or visual or

endoscopic examination. Each of these modalities provides op-

portunities for the integration of AI to improve the prediction of

cancer. For serum markers, such as prostate-specific antigen

(PSA), early research suggests that machine-learning algorithms

modeling PSA at different time points, in conjunction with other

serum markers, may be able to better predict the presence of

prostate cancer than PSA alone (Nitta et al., 2019). Perhaps

more than in any other application, AI has found high-impact

use in medical imaging screening. Narrow-task models have

been developed to localize lesions and predict the risk of malig-

nancy on lung cancer computed tomography (CT) (Ardila et al.,

2019) and breast cancer mammography (McKinney et al.,

2020), with applications that have been shown to perform on

par, or sometimes better than expert diagnosticians (Salim

et al., 2020). In these applications, raw pixel data of the image

is utilized as input into a deep-learning convolutional neural

network that is trained on the basis of radiologist-labeled

ground-truth outputs. Importantly, while the algorithms demon-

strate impressive results in terms of area under the curve, sensi-

tivity, and specificity, they do not evaluate direct clinical

endpoints, such as cancer mortality, healthcare costs, or quality

of life. Outside of medical imaging, AI has found utility in

screening endoscopy for colorectal carcinoma, with an applica-

tion that guides biopsy-site selection (Guo et al., 2020; Zhou

et al., 2020). Furthermore, there are opportunities to improve

diagnostic yield for other malignancies for which screening has

been traditionally difficult and unproven. This could be accom-

plished by AI improving the analysis of pre-existing data streams,

such as abdominal CT or magnetic resonance imaging (MRI), or

via its ability to integrate multi-modal data streams, such as

EHRandgenomicdata.While currently theUnitedStatesPreven-

tive Services Task Force (USPSTF, 2021) recommends against

screening formanycancers, there are anumber of ongoing inves-

tigations to determine whether incorporation of AI into screening

criteria and technology may allow screening to be utilized in a

wider array of disease sites, such as pancreatic cancer.
T3. Diagnosis
Diagnosing involves the exclusion of other benign disease pro-

cesses and the characterization of cancer by primary site, histo-

pathology, and, increasingly, genomic classification. Diagnosis

represents an AI touchpoint for these three domains by analyzing

their respective data streams: including clinical examination and

medical imaging (i.e., radiomics), digital pathology, and genomic

sequencing. A key study that revealed the promise of deep

learning for cancer diagnosis showed that convolutional neural

networks could achieve dermatologist-level accuracy in the

classification of skin cancers utilizing digital photographs (Es-

teva et al., 2017). Other promising areas of investigation in this

realm include non-invasive brain tumor diagnosis (Chang et al.,

2018) and prostate cancer Gleason grading (Schelb et al.,

2019) via MRI, automated histopathologic diagnosis for breast

cancer (Ehteshami Bejnordi et al., 2017) and prostate cancer

(Nagpal et al., 2020), and utilization of radiographic and histo-

pathologic data to predict underlying genomic classification

(Lu et al., 2018). Thus far, the Screening and Diagnosis touch-

points account for nearly all FDA-approved deep learning appli-

cations for clinical oncology, with three algorithms focusing on

mammography and three focusing on CT-based lesion diag-

nosis (Benjamens et al., 2020).

T4. Risk stratification and prognosis
Historically, risk stratification consisted of TNM staging,

although increasingly additional data streams such as genomics,

advanced imaging, and serum markers have allowed for more

precise risk stratification. Given the vast heterogeneity in cancer

risk, risk stratification presents a highly attractive use case for AI.

Over the past two decades, genomic classifiers, developed with

machine learning, have been integrated into risk stratification for

a number of malignancies. Classifiers such as OncotypeDx for

breast cancer, a logistic regression-based classifier, and the

Decipher score, a random forest-based classifier, have demon-

strated the ability to improve prognostication (Spratt et al., 2017)

and guide treatment (Sparano et al., 2018). The Decipher score

genomic classifier is based on 22 genomic expression markers

input into a random forest model that was trained to predict

metastasis after prostatectomy for patients with prostate cancer

at a single institution (Erho et al., 2013). This classifier has been

subsequently validated in several external settings, and is now

undergoing investigation in randomized controlled trials

(NCT04513717,NCT02783950). Deep-learning strategies have

been explored to integrate multi-omic data sources into risk-

stratification models utilizing combinations of diagnostic imag-

ing (Kann et al., 2020b), EHR data (Beg et al., 2017; Manz

et al., 2020), and genomic information (Qiu et al., 2020). Further-

more, there is the potential for deep learning to better risk-stratify
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patients based on large population databases, such as the Sur-

veillance, Epidemiology, and End Results program, by learning

non-linear relationships between database variables, although

preliminary efforts require validation (She et al., 2020).

T5. Initial treatment strategy
The formulation of initial treatment strategy is arguably the most

pivotal touchpoint for AI in the cancer pathway, as it directly in-

fluences patient management. The last two decades have seen

exponential growth in the number and complexity of initial treat-

ment options for common cancers (Kann et al., 2020a). A com-

mon predicament for initial treatment is which combination of

systemic therapy, radiotherapy, and surgery is optimal for a

given patient. Machine-learning methods utilizing genomic

(Scott et al., 2017) and radiomic data (Lou et al., 2019) have

been investigated to predict radiation sensitivity. While immuno-

therapy has been adopted in an increasing number of disease

settings, it remains difficult to predict response based on

currently available biomarkers, and machine-learning algorithms

with radiomic input have demonstrated the ability to improve

response prediction (Sun et al., 2018). Furthermore, deep

learning has demonstrated the ability to analyze multi-modal

data streams within the genomic realm: a recent analysis

demonstrated that integration of tumor mutational burden,

copy-number alteration, and microsatellite instability code can

help predict response to immunotherapy (Xie et al., 2020). AI

could also enable more accurate ‘‘evidence-based treatment.’’

Natural language processing and powerful language models

can help analyze published scientific works and utilize existing

oncology literature, for example by extracting medical oncology

concepts from EHR and linking these to a literature corpus

(Simon et al., 2019).

T6. Response assessment
Assessment of response to treatment generally includes radio-

graphic and clinical assessments. Quantitative response

assessment criteria such as Response Evaluation Criteria in

Solid Tumors (RECIST) and Response Assessment in Neuro-

Oncology (RANO) have long been established as reproducible

ways to assess response to therapy, although in the age of tar-

geted immunotherapies their validity has been questioned

(Villaruz and Socinski, 2013). As targeted therapeutics and im-

munotherapies have entered the clinic, however, it has become

clear that response assessment via RECIST is inadequate, due

to phenomena such as pseudoprogression (Gerwing et al.,

2019). Detailed response assessment is often a time-intensive

process that requires a high degree of human expertise and

experience, not tomention high intra- and inter-reader variability.

Additionally, despite periodic review and revision of these

criteria, they remain inapt at capturing edge cases, such as

variable lesion response, in the case of patients receiving immu-

notherapy. Deep learning has demonstrated potential for auto-

mated response assessment, including automated RANO

assessment (Kickingereder et al., 2019) and RECIST response

in patients undergoing immunotherapy (Arbour et al., 2020).

T7. Subsequent treatment strategy
When approaching AI algorithm development for subsequent

treatment strategy, there are a number of specific considerations
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that generate complexity as compared with initial treatment

strategy. To begin with there are additional data streams to

consider, such as prior treatments, treatment-related toxicity, re-

staging imaging, and often multiple tissue specimens. Given the

heterogeneity in data streams and the shrinking patient popula-

tions from which to build these models, subsequent treatment

strategy is a challenging space for evidence-based decision

making and, in turn, for reliable AI applications. Algorithms that

utilize longitudinal follow-up information may help here. In one

example, AI has demonstrated the ability to synthesize serial

CT follow-up imaging for lung cancer patients post chemoradia-

tion and to predict later recurrence (Xu et al., 2019). An interven-

tion such as this could guide selection for patients to undergo

consolidative treatments such as surgery or immunotherapy.

T8. Follow-up
Another underexplored area for AI oncologic applications is the

development of tools to guide precision follow-up. Diagnostic

and screening algorithms may often be transferable to the

follow-up setting, but will require retraining and validation for

the task of interest. Similar to T7, the effect of prior cancer treat-

ment on the data stream will often shift things significantly. For

example, radiomic features extracted from the same tumor,

pre- and post-treatment, show significant discrepancies (van

Dijk et al., 2019). These ‘‘delta’’ features could be used to predict

patient recurrence risk and late toxicity, helping to tailor follow-

up plans (Chang et al., 2019). Appropriately triaging patients

for escalated follow-up and attention can promote decreased

morbidity and more efficient healthcare resource utilization; AI

leveraging EHR data has demonstrated the ability to accomplish

this by selecting patients at high risk for acute-care visit while un-

dergoing cancer therapy and assigning them to an escalated

preventive care strategy (Hong et al., 2020). In cases where pa-

tients have untreatable relapse, end-of-life care becomes an

extremely important and challenging process. AI has shown po-

tential here as well, as a way to triage patients at high risk of mor-

tality and nudge physicians to converse with patients regarding

their values, wishes, and quality-of-life options (Ramchandran

et al., 2013).

CHALLENGES FOR CLINICAL TRANSLATION: BEYOND
PERFORMANCE VALIDATION

While tremendous strides have beenmade in the development of

oncologic AI, as evidenced by the surge in publications and pub-

lished datasets in recent years, there remains a large gap be-

tween evidence for AI performance and evidence for clinical

impact. While there have been thousands of published studies

of deep-learning algorithm performance (Kann et al., 2019), a

recent systematic review found only nine prospective trials and

two published randomized clinical trials of deep learning in med-

ical imaging (Nagendran et al., 2020).

As alluded to above, perhaps the defining barrier to develop-

ment of clinical AI applications in oncology, and healthcare over-

all, is data limitation, both in quality and quantity. The problems

with data curation, aggregation, transparency, bias, and reli-

ability have been well described (Norgeot et al., 2020; Thompson

et al., 2018). Additionally, the lack of AI model interpretability,

trust, reproducibility, and generalizability has received ample
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and well-justified attention (Beam et al., 2020). While all of these

challenges must be overcome for successful AI development,

here we introduce several concepts specific to clinical transla-

tion of models that have already succeeded in preliminary stages

of development and validation: clinical validity, utility, and usabil-

ity (Figure 3). Incorporation of these concepts into model design

and evaluation is easy to overlook, yet is critical to move clinical

AI beyond the research and development stage into real-world

cancer care.

To demonstrate clinical validity, a model is often evaluated in

the following general sequence: internal validation, external vali-

dation, prospective testing, and local testing in the real-world

population of interest (Park et al., 2020). Recently developed

guidelines such as FAIR data, CONSORT/SPIRTAI, and the (in

development) TRIPOD-AI checklists should be followed to

ensure reproducibility, transparency, and methodologic rigor

(Liu et al., 2019). These guidelines are an important step forward

in standardizing AI model development pathways and establish-

ing a basis to determine AI study methodological rigor. While the

vast majority of AI published reports include an internal blinded

test set, far fewer utilize an external validation set, and an even

smaller proportion employ prospective testing and benchmark

comparisons with human experts (Kim et al., 2019). Given the

lack of hypothesis-driven feature selection in most AI models,

performance in real-world scenarios can vary dramatically if

the test data distribution varies from the training data (Moreno-

Torres et al., 2012). For this reason, multiple external validation

sets are of utmost importance. Beyond this, it is often difficult

to predict how a model will perform on edge cases, i.e., those

that were under-represented in training data (Oakden-Rayner

et al., 2020). In the practice of oncology, detection of rare find-

ings can be critical to safe cancer care, and thus must be taken

into account to demonstrate that a model is clinically valid. One

way to mitigate the risk of model failure in real-world use is to
conduct trial, run-in periods of ‘‘silent’’ pro-

spective testing in the scenario of interest

(Kang et al., 2020). If a model performs

well in the run-in period, there is some

assurance that it will be safe to use,

although its performance on extremely

rare cases may be still difficult to presume.

Demonstrating clinical utility requires

clinical validity as a prerequisite, but goes

beyond performance validation to the

testing of clinically meaningful endpoints.

High performance on commonly used end-

points, such as area under the receiver-

operating characteristic curve, sensitivity,

or specificity, may suffice for certain diag-

nostic applications, but real-world impact

will require validation of clinical endpoints

as appropriate for each touchpoint along
the care pathway. In the case of oncology, this includes overall

survival, disease control, toxicity reduction, improved quality of

life, and decreased healthcare resource utilization. Testing of

these endpoints should be ideally performed in the setting of a

randomized trial. The gold standard would be randomizing pa-

tients to the AI intervention and directly comparing clinical end-

points. A few of these trials have been completed, with one

notable example involving testing accuracy for polyp detection

rate on colonoscopy (Wang et al., 2019). In this study, the pri-

mary outcome was adenoma detection rate. Despite demon-

strating the superiority of the AI systems, downstream clinical

benefit in terms of quality of life or survival requires yet further

investigation. Another approach to AI clinical trials is to apply a

validated model to all patients for risk stratification and then to

apply randomized interventions. This was pursued successfully

in a trial that utilized EHR data to predict patients at high risk

for emergency department (ED) visits during radiotherapy

(Hong et al., 2020). High-risk patients were then randomized to

usual care or extra preventive provider visits. It was found that

high-risk patients randomized to extra visits had significantly

fewer ED and hospital admissions, while low-risk patients had

uniformly low rates of ED and hospital admissions without extra

care. While providing a lower level of clinical utility evidence than

a true randomized trial, this type of study strategy is attractive

and practical for AI-based risk-prediction models, which make

up a large proportion of AI models in development. Randomized

clinical trials are notoriously difficult and time consuming to

execute, and AI interventions have unique characteristics that

make such undertakings even more daunting. Notably, AI

models are able to adapt to new data and improve over time;

how would one take this into account in a traditional randomized

trial? While we need AI to embrace randomized trials to truly

prove clinical utility, it may be time to recognize that a re-imag-

ining of the traditional randomized clinical trial may be necessary
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to appropriately study the benefits of AI applications

(Haring, 2019).

Beyond validation of clinically meaningful endpoints, demon-

strating clinical usability involves study of the AI model in a

real-world setting, where it interfaces with clinical practitioners

and patients. Evaluation of effects of the model on time task,

user satisfaction, and acceptance of AI recommendations

should be performed (Kumar et al., 2020). A mechanism of feed-

back should be integrated into the design of the platform to iden-

tify weak points and opportunities for improved interface (Cutillo

et al., 2020). Additionally, inter-operability between systems at

the facility-to-facility, intra-facility, and point-of-care levels are

crucial to streamline workflow (He et al., 2019). Usability issues

are also specific to the data streams being analyzed. New data

streams such as mobile health data and wearable activity mon-

itors each present unique challenges to usability and adoption

(Beg et al., 2017). A key component of promoting usability is

interpretability of the AI algorithm. As data streams become

more inter-related, it is increasingly difficult to discern a biolog-

ical or clinical rationale supporting an algorithm’s predictions.

This ‘‘black-box’’ effect may be acceptable in certain consumer

electronics industries, but due to the consequential and medico-

legal nature of healthcare decisionmaking, lack of interpretability

poses a tremendous barrier to clinical use (Doshi-Velez and Kim,

2017;Wang et al., 2020). Fortunately, there is a growing research

field dedicated to investigation of interpretability issues, and

several techniques, such as saliency maps, hidden-states anal-

ysis, variable importance metrics, and feature visualizations can

illuminate some aspects of AI prediction rationale (Guo et al.,

2019; Olah et al., 2018). Beyond this, an appreciation of ad-

vances in Human Factors research and collaboration with appro-

priate experts can help streamline the adoption of otherwise

clinically validated algorithms. Finally, translating algorithms

into clinically usable solutions requires robust information tech-

nology support services that may require dedicated investment

from clinical institutions and departments.

Another key concept related to clinical usability is addressing

the challenges that emerge when multiple AI models are de-

ployed sequentially or simultaneously at a given touchpoint or

series of touchpoints. Orchestration of these situations, which

are expected to become more common, require attention to

end-user responsibilities, inter-operability, access, and training.

As patients move through the oncology care path, they interact

(directly or indirectly) with many different care providers who

may be the primary users of a given AI application (Figure 2).

These users may have a primarily diagnostic or therapeutic

role (or both). From a simplified perspective, the primary

diagnosticians of the cancer care path are pathologists and radi-

ologists, while the therapeutic clinicians tend to be medical, ra-

diation, interventional, and surgical oncologists. Multidisci-

plinary touchpoints along the pathway, e,g., tumor boards,

represent opportunities to collate and orchestrate disparate AI

applications. In addition to physicians, there are numerous

advanced practice providers such as nurses and physician as-

sistants, as well as therapists, social workers, and medical stu-

dents, who may be users of a specific AI application. If, for

example, a patient receives a CT scan with an AI-generated pre-

diction of malignancy, and this prediction is subsequently uti-

lized as input for another algorithm to recommend surgery as
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treatment, who is the ‘‘designated user’’ primarily responsible

for utilizing and disseminating that information? A further issue,

which logically follows, is who is legally liable for decisions based

on the use of the model. Specific solutions have not yet been

developed to address these issues, and are, unfortunately, likely

to arise on an ad hoc case-by-case basis. This clinical orchestra-

tion of AI models merits further resources, investigation, and

guidelines aimed at medical AI developers and cancer care pro-

viders to navigate these complex issues.

Despite the vanishingly few FDA-approved AI applications for

oncologic indications, with numerous applications in the pipe-

line, there is substantial interest in streamlining ways to bridge

the gap between development and clinical translation. Accord-

ingly, the FDA is in the process of devising AI- and machine-

learning-specific guidelines for approved clinical use. The

recently released action plan incorporates the above clinical

concepts and sets the stage for further defining a framework

for safe AI translation to the clinic (FDA, 2021).

CONCLUSIONS

Increasing data streams and advances in computational algo-

rithms have positioned AI to improve clinical oncology via rigor-

ously evaluated, narrow-task applications interacting at specific

touchpoints along the cancer care path. While there are a num-

ber of promising AI applications for clinical oncology in develop-

ment, substantial challenges remain to bridge the gap to clinical

translation. The most successful models leverage large-scale,

robustly annotated datasets for narrow tasks at specific cancer

care touchpoints. Further development of AI applications for

cancer care should focus on clinical validity, utility, and usability.

Successful incorporation of these concepts will require bringing

a patient-provider, clinical decision-centric emphasis to model

development and evaluation.
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Salim, M., Wåhlin, E., Dembrower, K., Azavedo, E., Foukakis, T., Liu, Y., Smith,
K., Eklund, M., and Strand, F. (2020). External evaluation of 3 commercial arti-
ficial intelligence algorithms for independent assessment of screening mam-
mograms. JAMA Oncol. 6, 1581–1588.

Samuel, A.L. (1959). Some studies in machine learning using the game of
checkers. IBM J. Res. Dev. 3, 210–229.

Schelb, P., Kohl, S., Radtke, J.P., Wiesenfarth, M., Kickingereder, P., Bickel-
haupt, S., Kuder, T.A., Stenzinger, A., Hohenfellner, M., Schlemmer, H.-P.,
et al. (2019). Classification of cancer at prostate MRI: deep learning versus
clinical PI-RADS assessment. Radiology 293, 607–617.

Schilsky, R.L. (2010). Personalized medicine in oncology: the future is now.
Nat. Rev. Drug Discov. 9, 363–366.

Scott, J.G., Harrison, L.B., and Torres-Roca, J.F. (2017). Genomic biomarkers
for precision radiation medicine—authors’ reply. Lancet Oncol. 18, e239.

She, Y., Jin, Z., Wu, J., Deng, J., Zhang, L., Su, H., Jiang, G., Liu, H., Xie, D.,
Cao, N., et al. (2020). Development and validation of a deep learning model
for non-small cell lung cancer survival. JAMA Netw. Open 3, e205842.

Simon, G., DiNardo, C.D., Takahashi, K., Cascone, T., Powers, C., Stevens, R.,
Allen, J., Antonoff, M.B., Gomez, D., Keane, P., et al. (2019). Applying artificial
intelligence to address the knowledge gaps in cancer care. Oncologist 24, 772.

Somashekhar, S.P., Kumarc, R., Rauthan, A., Arun, K.R., Patil, P., and Ramya,
Y.E. (2017). Abstract S6-07: Double blinded validation study to assess perfor-
mance of IBM artificial intelligence platform, Watson for oncology in compar-
ison with Manipal multidisciplinary tumour board—first study of 638 breast
cancer cases. Cancer Res. 77, https://doi.org/10.1158/1538-7445.
SABCS16-S6-07.

Sparano, J.A., Gray, R.J., Makower, D.F., Pritchard, K.I., Albain, K.S., Hayes,
D.F., Geyer, C.E., Jr., Dees, E.C., Goetz, M.P., Olson, J.A., Jr., et al. (2018).
Adjuvant chemotherapy guided by a 21-gene expression assay in breast can-
cer. N. Engl. J. Med. 379, 111–121.

Spratt, D.E., Yousefi, K., Deheshi, S., Ross, A.E., Den, R.B., Schaeffer, E.M.,
Trock, B.J., Zhang, J., Glass, A.G., Dicker, A.P., et al. (2017). Individual pa-
tient-level meta-analysis of the performance of the decipher genomic classifier
in high-risk men after prostatectomy to predict development of metastatic dis-
ease. J. Clin. Oncol. 35, 1991–1998.

https://doi.org/10.1101/2020.02.24.20025890
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref42
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref42
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref43
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref43
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref44
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref44
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref44
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref44
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref45
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref45
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref45
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref46
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref46
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref46
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref46
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref47
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref47
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref47
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref47
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref48
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref48
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref49
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref49
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref49
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref49
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref50
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref50
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref51
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref51
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref51
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref51
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref52
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref52
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref52
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref52
https://towardsdatascience.com/how-do-you-know-you-have-enough-training-data-ad9b1fd679ee
https://towardsdatascience.com/how-do-you-know-you-have-enough-training-data-ad9b1fd679ee
https://towardsdatascience.com/how-do-you-know-you-have-enough-training-data-ad9b1fd679ee
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref54
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref54
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref54
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref54
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref54
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref55
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref55
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref55
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref56
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref56
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref56
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref56
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref57
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref57
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref57
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref57
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref58
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref58
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref58
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref58
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref58
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref59
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref59
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref59
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref59
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref60
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref60
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref60
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref61
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref61
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref62
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref62
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref62
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref62
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref63
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref63
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref63
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref64
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref64
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref65
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref65
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref66
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref66
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref67
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref67
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref67
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref67
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref67
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref68
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref68
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref69
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref69
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref70
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref70
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref70
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref70
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref71
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref71
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref72
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref72
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref72
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref72
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref73
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref73
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref74
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref74
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref75
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref75
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref75
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref76
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref76
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref76
https://doi.org/10.1158/1538-7445.SABCS16-S6-07
https://doi.org/10.1158/1538-7445.SABCS16-S6-07
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref78
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref78
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref78
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref78
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref79
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref79
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref79
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref79
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref79


ll
Perspective
Stephenson, A.J., Scardino, P.T., Kattan, M.W., Pisansky, T.M., Slawin, K.M.,
Klein, E.A., Anscher, M.S., Michalski, J.M., Sandler, H.M., Lin, D.W., et al.
(2007). Predicting the outcome of salvage radiation therapy for recurrent pros-
tate cancer after radical prostatectomy. J. Clin. Oncol. 25, 2035–2041.

Sun, R., Limkin, E.J., Vakalopoulou, M., Dercle, L., Champiat, S., Han, S.R.,
Verlingue, L., Brandao, D., Lancia, A., Ammari, S., et al. (2018). A radiomics
approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1
or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multico-
hort study. Lancet Oncol. 19, 1180–1191.

Thompson, R.F., Valdes, G., Fuller, C.D., Carpenter, C.M., Morin, O., Aneja, S.,
Lindsay, W.D., Aerts, H.J.W.L., Agrimson, B., Deville, C., Jr., et al. (2018). Arti-
ficial intelligence in radiation oncology: a specialty-wide disruptive transforma-
tion? Radiother. Oncol. 129, 421–426.

Topol, E.J. (2019). High-performance medicine: the convergence of human
and artificial intelligence. Nat. Med. 25, 44–56.

(2021). USPSTF: A and B Recommendations. https://www.uspreventiveser
vicestaskforce.org/uspstf/recommendation-topics/uspstf-and-b-
recommendations.

Villaruz, L.C., and Socinski, M.A. (2013). The clinical viewpoint: definitions, lim-
itations of RECIST, practical considerations of measurement. Clin. Cancer
Res. 19, 2629–2636.

Wang, P., Berzin, T.M., Glissen Brown, J.R., Bharadwaj, S., Becq, A., Xiao, X.,
Liu, P., Li, L., Song, Y., Zhang, D., et al. (2019). Real-time automatic detection
system increases colonoscopic polyp and adenoma detection rates: a pro-
spective randomised controlled study. Gut 68, 1813–1819.

Wang, F., Kaushal, R., and Khullar, D. (2020). Should health care demand inter-
pretable artificial intelligence or accept ‘‘black box’’ medicine? Ann. Intern.
Med. 172, 59–60.
Weinstein, J.N., Collisson, E.A., Mills, G.B., Shaw, K.R.M., Ozenberger, B.A.,
Ellrott, K., Shmulevich, I., Sander, C., Stuart, J.M., Network, C.G.A.R., et al.
(2013). The cancer genome atlas pan-cancer analysis project. Nat. Genet.
45, 1113.

White, R.W., and Horvitz, E. (2017). Evaluation of the feasibility of screening
patients for early signs of lung carcinoma in web search logs. JAMA Oncol.
3, 398–401.

Wilkinson, M.D., Dumontier, M., Aalbersberg, I.J.J., Appleton, G., Axton, M.,
Baak, A., Blomberg, N., Boiten, J.-W., da Silva Santos, L.B., Bourne, P.E.,
et al. (2016). The FAIR Guiding Principles for scientific data management
and stewardship. Sci. Data 3, 160018.

Xie, C., Duffy, A.G., Brar, G., Fioravanti, S., Mabry-Hrones, D., Walker, M., Bo-
nilla, C.M., Wood, B.J., Citrin, D.E., Gil Ramirez, E.M., et al. (2020). Immune
checkpoint blockade in combination with stereotactic body radiotherapy in
patients with metastatic pancreatic ductal adenocarcinoma. Clin. Cancer
Res. 26, 2318–2326.

Xu, Y., Hosny, A., Zeleznik, R., Parmar, C., Coroller, T., Franco, I., Mak, R.H.,
and Aerts, H.J.W.L. (2019). Deep learning predicts lung cancer treatment
response from serial medical imaging. Clin. Cancer Res. 25, 3266–3275.

Yousuf Zafar, S. (2016). Financial toxicity of cancer care: it’s time to intervene.
J. Natl. Cancer Inst. 108, djv370.

Zhong, G., Ling, X., andWang, L. (2019). From shallow feature learning to deep
learning: benefits from the width and depth of deep architectures. Wiley Inter-
discip. Rev. Data Min. Knowl. Discov. 9, e1255.

Zhou, D., Tian, F., Tian, X., Sun, L., Huang, X., Zhao, F., Zhou, N., Chen, Z.,
Zhang, Q., Yang, M., et al. (2020). Diagnostic evaluation of a deep learning
model for optical diagnosis of colorectal cancer. Nat. Commun. 11, 2961.

Zhu, X., Vondrick, C., Fowlkes, C., and Ramanan, D. (2015). Do we need more
training data? Int. J. Comput. Vis. 119, 76–92.
Cancer Cell 39, July 12, 2021 927

http://refhub.elsevier.com/S1535-6108(21)00210-5/sref80
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref80
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref80
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref80
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref81
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref81
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref81
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref81
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref81
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref82
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref82
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref82
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref82
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref83
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref83
https://www.uspreventiveservicestaskforce.org/uspstf/recommendation-topics/uspstf-and-b-recommendations
https://www.uspreventiveservicestaskforce.org/uspstf/recommendation-topics/uspstf-and-b-recommendations
https://www.uspreventiveservicestaskforce.org/uspstf/recommendation-topics/uspstf-and-b-recommendations
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref85
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref85
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref85
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref86
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref86
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref86
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref86
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref87
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref87
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref87
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref87
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref87
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref88
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref88
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref88
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref88
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref89
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref89
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref89
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref90
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref90
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref90
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref90
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref91
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref91
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref91
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref91
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref91
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref92
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref92
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref92
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref93
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref93
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref94
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref94
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref94
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref95
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref95
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref95
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref96
http://refhub.elsevier.com/S1535-6108(21)00210-5/sref96

	Artificial intelligence for clinical oncology
	T1. Risk prediction and prevention
	T2. Screening
	T3. Diagnosis
	T4. Risk stratification and prognosis
	T5. Initial treatment strategy
	T6. Response assessment
	T7. Subsequent treatment strategy
	T8. Follow-up
	Acknowledgments
	Declarations of interests
	References


