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ABSTRACT

Trillions of microbes inhabit the human gut, not only
providing nutrients and energy to the host from the
ingested food, but also producing metabolic bioactive
signaling molecules to maintain health and elicit dis-
ease, such as cardiovascular disease (CVD). CVD is the
leading cause of mortality worldwide. In this review, we
presented gut microbiota derived metabolites involved
in cardiovascular health and disease, including
trimethylamine-N-oxide (TMAO), uremic toxins, short
chain fatty acids (SCFAs), phytoestrogens, antho-
cyanins, bile acids and lipopolysaccharide. These gut
microbiota derived metabolites play critical roles in
maintaining a healthy cardiovascular function, and if
dysregulated, potentially causally linked to CVD. A bet-
ter understanding of the function and dynamics of gut
microbiota derived metabolites holds great promise
toward mechanistic predicative CVD biomarker discov-
eries and precise interventions.

KEYWORDS gut microbiota, metabolites, cardiovascular
health, cardiovascular disease

INTRODUCTION

There is a big gap in interpreting the molecular physiology by
using the human genome coding capacity encompassing
23,000 coding genes (Gonzaga-Jauregui et al., 2012). The
human gut is inhabited with 100 trillion microbes, with the
majority as bacteria and archaea, fungi and microeukaryotes
(Wampach et al., 2017). Almost 10 million coding genes of
the microbiota have been uncovered, greatly expanding the

coding capacity of our human as a superorganism (Qin et al.,
2010; Li et al., 2014). Gut microbiota are essential to human
health in many aspects, such as training intestinal epithelial
barrier, modulating immuno-function, digesting host indi-
gestible nutrients, producing vitamins and hormones and
preventing pathogenic bacterium colonization (Schuijt et al.,
2016). For a healthy subject, gut microbiota homeostasis is
maintained with pathogenic microbe growth under control.
Once the balance breaks, i.e., dysbiosis, pathogenic
microbes thrive, leading to gut related diseases, such as
inflammatory bowel disease (IBD), obesity, allergic disor-
ders, diabetes mellitus, autism, colorectal cancer and car-
diovascular disease (DeGruttola et al., 2016; Yang et al.,
2015; Battson et al., 2017). Fecal microbiota transplantation
has shown great efficacy in managing Clostridium difficile
infection and Crohn’s disease (Bakken et al., 2013; Paasche
2013; Zhang et al., 2013). In animal model, fecal microbiota
transplant to germ free mice recipients has been shown to
transmit obesity and atherosclerosis susceptibility, suggest-
ing the great potential of fecal microbiota transplantation in
treating a panel of complex disease (Gregory et al., 2015;
Turnbaugh et al., 2006). In addition, the prebiotic and pro-
biotic administrations also show beneficial effects in opti-
mizing gut microbiota community structure and preventing
dysbiosis (Hamilton et al., 2017; Anhe et al., 2015; Delgado
et al., 2014; Kouchaki et al., 2017).

The association between gut microbiota and health has
become a hot topic, the rapid progress in this field is ascri-
bed to next generation sequencing methods as well as the
ease of maintaining germ free mice (Mardis, 2008; Bhattarai
and Kashyap, 2016).

Gut microbes are involved in the biosynthesis of an array
of bioactive compounds, contributing to normal human
physiological functions or eliciting disease (Fan et al., 2015;
Wang et al., 2011). CVD is the leading cause of death
worldwide, the association with gut microbiota has been
reported in recent few years, which is mediated by gut
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microbiota derived metabolites (Wang et al., 2011; Tang
et al., 2013; Koeth et al., 2013). In this review, we listed gut
microbiota derived metabolites and their clinical relevance in
cardiovascular health and disease pathogenesis.

TRIMETHYLAMINE N OXIDE (TMAO)

Gut microbiota cleave some trimethylamine containing
compounds to produce trimethylamine (TMA), which can be
further oxidized as trimethylamine N oxide (TMAO) in the
host liver by flavin monooxygenase (FMOs) (Wang et al.,
2011; Koeth et al., 2013). FMO3 is the most abundant
enzyme in the liver, while FMO1 and FMO2 can also cat-
alyze the oxidation of TMA (Bennett et al., 2013). In some
patients with loss-of-function mutation of the FMO3 gene,
accumulated TMA in vivo spreads all over the body and is
released in sweat and breath, which is a genetic disease
named fish odor syndrome (Dolphin et al., 1997; Ulman
et al., 2014). The precursors for gut microbiota to produce
TMA include TMAO, choline, phosphatidylcholine, carnitine,
γ-butyrobetaine, betaine, crotonobetaine and glycerophos-
phocholine, all of which are abundant in animal diet (Koeth
et al., 2013; Wang et al., 2015; Rausch et al., 2013).

The diet-gut microbiota-liver to TMAO biosynthesis con-
stitutes a metaorganismal pathway (Fig. 1), including four
enzymes involved in production of TMA, choline-TMA lyase
(cutC/D) (Craciun et al., 2014), carnitine monooxygenase
(cntA/B) (Zhu et al., 2014), betaine reductase (Andreesen,
1994), and TMAO reductase (Pascal et al., 1984).

Furthermore, yeaW/X, highly homologous to cntA/B, also
contributes to production of TMA. Besides carnitine, yeaW/X
can also use choline, γ-butyrobetaine and betaine as sub-
strates to produce TMA (Koeth et al., 2014).

CutC/D has been crystalized and the enzymatic mecha-
nism has been demonstrated. CutD, as a radical S-adeno-
sylmethionine-activatase, activates CutC, resulting in
formation of a glycyl radical. In CutC, the glycyl radical
abstracts the hydrogen from cysteine to produce a thiyl
radical and further captures the hydrogen atom from choline
at C1 position, resulting in molecular rearrangement and
TMA production. (Craciun et al., 2014; Kalnins et al., 2015;
Bodea et al., 2016). CntA/B is a two-component Rieske-type
oxygenase/reductase, carnitine can be first oxidized fol-
lowed by cleavage at C-N bond by CntA/B to produce TMA
and malic semialdehyde (Zhu et al., 2014). Hundreds of
bacterial strains are predicted to express cutC/D or cntA/B-
yeaW/X in the human gut (Fig. 2A, 2B, 2C and Table S1)
(Rath et al., 2017; Martinez-del Campo et al., 2015). Proteus
mirabilis is a cutC/D expressing bacterium species and since
it can grow under both aerobic and anaerobic conditions, it
has been used as a model to screen choline trimethylamine
lyase inhibitors (Wang et al., 2015). It is most likely the gene
tree of cutC substantially differs from species tree, e.g.,
species of the same genus but with distinct topology for
Klebsiella (Fig. 2D). FMO3 expression in mice is regulated
by sex hormone, repressed by androgens and stimulated by
estrogens (Bennett et al., 2013).
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Figure 1. Metaorganismal pathway of trimethylamine N oxide (TMAO) biosynthesis and linking to cardiovascular disease.

FMOs, Flavin monooxygenases. R1, R2, CH3(CH2)n1(CH=CH)n2, n2 = 0, 1, 2…..6, n1+2n2 = 15, 17, 19, 21.
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Many lines of evidence show the pro-atherogenic prop-
erty of TMAO. Circulating TMAO level is associated with
prevalence of cardiovascular disease and can independently
predict incident risk for major adverse cardiac events,
including myocardial infarction, stroke or death after adjust-
ment for traditional cardiac risk factors and renal function
(Wang et al., 2011; Tang et al., 2013). Circulating choline,
betaine and carnitine levels also have been shown associ-
ated with prevalence of cardiovascular disease and can
predict incident risk for major adverse cardiac events.
However, their prognostic values are dependent on the
serum TMAO levels (Koeth et al., 2013; Wang et al., 2014).
ApoE-null mice fed a chow diet supplemented with TMAO
appear to have an enhanced aortic lesion. Furthermore,
choline can also increase aortic lesion and promote

atherosclerosis but indispensable to gut microbiota, indicat-
ing the causal of TMAO in atherosclerosis (Wang et al.,
2011). In vitro animal models have also confirmed the pro-
thrombotic effect of TMAO by enhancing platelet aggregation
(Zhu et al., 2016). Consistently, oral choline supplementation
increases fasting TMAO levels and also enhances platelet
aggregation (Zhu et al., 2017).

Mechanisms by which how TMAO can promote
atherosclerosis and thrombosis have been studied at the
molecular level. TMAO activates vascular smooth muscle
cell and endothelial cell MAPK, nuclear factor-κB (NF-κB)
signaling, leading to inflammatory gene expression and
endothelial cell adhesion of leukocytes (Seldin et al., 2016).
Meanwhile, TMAO can also activate the NLRP3 inflamma-
some (Sun et al., 2016; Boini et al., 2017; Chen et al., 2017).
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Figure 2. Predicted bacteria strains encoding the cutC/yeaW/cntA TMA lyases. (A) Predicted bacteria strains encoding cutC

gene. Abbreviation, HMP, the NIH Human Microbiome Project (Data release 1.1, September 26, 2017 e), Ortho, cutC encoding gene

of OrthoDB (http://www.orthodb.org/v9.1/) (Zdobnov et al., 2017), and VM, data from the reference (Rath et al., 2017). (B) Predicted

bacteria stains encoding yeaW/cntA genes. Ortho, yeaW encoding gene of OrthoDB. (C) Predicted bacterial strains encoding both

yeaW and cutC. (D) Phylogenetic gene tree of cutC encoding strains. The Neighbor-Joining tree was built with MEGA7 (Kumar et al.,

2016).
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TMAO in vivo can increase scavenger receptor, CD36 and
SR-A1 expression, leading to more uptake of modified LDL
for macrophage to form foam cell (Wang et al., 2011). On the
other hand, TMAO decreases expression of two key
enzymes, CYP7A1 and CYP27A1, essential for bile acid
biosynthesis and multiple bile acid transporters (OATP1,
OATP4, MRP2 and NTCP) in the liver, which decreases bile
acid pool, resulting in decreased reverse cholesterol efflux
(Koeth et al., 2013). Moreover, TMAO increases endoplas-
mic recticulum calcium release in platelet cell, consequently
leading to platelet aggregation and thrombosis (Zhu et al.,
2016).

The association between TMAO and cardiovascular dis-
ease has been highlighted in different groups by using dif-
ferent cohorts worldwide (Troseid et al., 2015; Suzuki et al.,
2016, 2017; Schuett et al., 2017). Besides cardiovascular
disease, TMAO also contributes to renal insufficiency and
mortality risk in chronic kidney disease, type II diabetes,
insulin resistance, non-alcoholic fatty liver disease and col-
orectal cancer as well (Tang et al., 2015; Shan et al., 2017;
Oellgaard et al., 2017; Kummen et al., 2017). These studies
indicate circulating TMAO levels has the potential to be
managed for TMAO related diseases intervention. Specially,
targeting the metaorganismal pathway for TMAO biosyn-
thesis can be achieved by a few key steps, including
inhibiting gut microbiota cleavage of TMA containing com-
pounds in nutrient via enzymatic inhibitor, controlling intake
of diet rich in TMA precursors and inhibiting the oxidation of
TMA to TMAO.

As expected, the injection of antisense oligonucleotide to
Ldlr-null mice decreases the hepatic Fmo3 gene expression,
resulting in decreased mouse plasma TMAO thereby
decreasing aortic lesion in western diet fed mice (Shih et al.,
2015). However, the accumulated TMA in mice will show fish
odor syndrome. In addition, Fmo3 knockdown exacerbates
hepatic endoplasmic reticulum (ER) stress and inflammation
(Warrier et al., 2015). Thus, developing gut microbiota
enzymatic inhibitors to inhibit TMA formation will be more
practical.

A choline analogue, 3,3-dimethylbutanol (DMB), has
been uncovered with inhibitory effect to choline TMA lyase
activity in turn decreasing circulating TMAO, and therefore
attenuating the promoting role of choline in atherosclerosis
(Wang et al., 2015). DMB is a natural product, distributed in
certain balsamic vinegars, red wines, cold-pressed extra
virgin olive oils and grapeseed oils. DMB has not been found
any adverse effect to the liver or renal functions even as high
as in mice drinking water up to 1% (Wang et al., 2015). Very
recently, we have found that several more choline analogues
show more potent in inhibiting choline TMA lyase activity
than DMB (to be published). But inhibitors to different
enzymatic cleavage of other substrates are still needed.
Furthermore, a study shows that resveratrol, a phytoalexin,
can decrease plasma TMAO and subsequent atherosclero-
sis in ApoE−/− mice via gut microbiota remodeling, charac-
terized by increased levels of the genera Lactobacillus and

Bifidobacterium with increased bile salt hydrolase activity to
increase bile acid neosynthesis, suggesting the potential of
resveratrol as prebiotics (Chen et al., 2016).

UREMIC TOXINS

Toxins, such as urea and asymmetric dimethylarginine, can
be accumulated in blood during chronic kidney disease
(CKD), associated to CKD complications especially heart
failure which is the leading cause of CKD mortality (Glassock
2008). Moreover, protein-bound uremic toxins such as
indoxyl sulfate, indoxyl glucuronide, indoleacetic acid, p-
cresyl sulfate, p-cresyl glucuronide, phenyl sulfate, phenyl
glucuronide, phenylacetic acid and hippuric acid have been
reported to be increased in serum in hemodialysis patients
(Itoh et al., 2013). These uremic toxins are gut microbiota
derived metabolites of amino acids (Devlin et al., 2016). The
aromatic amino acids in proteins, phenylalanine, tyrosine
and tryptophan, can be metabolized by gut microbiota (Nallu
et al., 2017; Pereira-Fantini et al., 2017). Both microbiota and
host liver are involved in biosynthesis of these uremic toxins
(Fig. 3) (Devlin et al., 2016; Meyer and Hostetter 2012;
Webster et al., 1976; Gryp et al., 2005).

The serum indoxyl sulfate level, positively correlated with
coronary atherosclerosis scores, might be a predicative
mechanistic biomarker of coronary artery disease severity
(Hsu et al., 2013). Further studies have shown that indoxyl
sulfate aggravates cardiac fibrosis, cardiomyocyte hyper-
trophy and atrial fibrillation (Yisireyili et al., 2013; Aoki et al.,
2015). Atrial fibrillation, the most common clinical arrhythmia,
results in cardiovascular morbidity and mortality attributed to
congestive heart failure and stroke (Hung et al., 2017).
Mechanistically, indoxyl sulfate enhances platelet activities,
increases response to collagen and thrombin, leading to
thrombosis (Yang et al., 2017). Vascular smooth muscle cell
calcification is associated with major adverse cardiovascular
events while indoxyl sulfate has been found to promote
vascular smooth muscle cell calcification (Zhang et al.,
2018). Indoxyl sulfate activates NF-κB signaling pathway,
leading to increased intercellular adhesion molecule-1
(ICAM-1) and monocyte chemotactic protein-1 (MCP-1)
expression in endothelial cells (Tumur et al., 2010). ICAMs
over-expression in endothelial cells is the initiating step for
atherosclerotic plaque formation (Moss and Ramji 2016).
Indoxyl sulfate inhibits nitric oxide production and induces
reactive oxygen species production, gradually damaging
endothelial cell layer (Tumur and Niwa 2009). Taken toge-
ther, these studies indicate indoxyl sulfate mechanistically
linked to CVD at the molecular and cellular levels.

p-Cresyl sulfate is a biomarker in predicting cardiovas-
cular event and renal function progression in CKD patients
without dialysis (Lin et al., 2014; Wu et al., 2012). p-Cresyl
sulfate can induce NADPH oxidase activity to produce
reactive oxygen species, resulting in cardiomyocyte apop-
tosis and subsequent diastolic dysfunction (Han et al., 2015).
Apocynin and N-acetylcysteine, inhibitors to NADPH
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oxidase, can attenuate the effect of p-cresyl sulfate induced
apoptosis (Han et al., 2015). p-Cresyl sulfate increased
endothelial cell tumor necrosis factor-α (TNF-α), MCP-1,
ICAM and VCAM expression, therefore mechanistically
promotes atherogenesis (Jing et al., 2016). Given that
p-cresyl sulfate, very similar to indoxyl sulfate, is notoriously
difficult to eliminate by dialysis (Gryp et al., 2005), it is most
likely that intervening the biosynthesis pathway is the best
way to attenuate such toxic effect.

SHORT CHAIN FATTY ACIDS

Short chain fatty acids (SCFAs) refer to fatty acids with a
carbon number of not greater than 6, including three major
SCFAs, acetic acid, propionic acid, butyric acid, and two less
abundant valeric acid and caproic acid. Acetic acid, the most
abundant SCFA in the colon with more than half of the total
SCFA detected in feces, can be generated by carbohydrate

fermentation, or synthesized from hydrogen and carbon
dioxide or formic acid through the Wood-Ljungdahl pathway
(Miller and Wolin, 1996; Louis et al., 2014). Three distinct
pathways including succinate pathway, acrylate pathway,
and propanodiol pathway, can generate propionic acid (Re-
ichardt et al., 2014). Butyric acid-producing bacteria use two
different pathways, the pathway using phosphotransbutyry-
lase and butyrate kinase enzymes to convert butyryl-CoA
into butyrate (e.g., Coprococcus species) (Louis et al., 2004;
Flint et al., 2015), and the butyryl-CoA/acetate CoA-trans-
ferase pathway, in which butyryl-CoA is converted to butyric
acid in a single step enzymatic reaction (e.g., Faecalibac-
terium, Eubacterium and Roseburia) (Louis et al., 2010).

The proposed biosynthesis of SCFAs in bacteria is
sequential from glycolysis of glucose to pyruvate, to acetyl-
coA, and eventually to acetic acid, propionic acid and butyric
acid. Intriguingly, amino acids are alternative substrate for
SCFAs biosynthesis. Glucose and amino acids can be
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digested from starch and protein in small intestine, respec-
tively. Glucose and amino acids can be absorbed into cir-
culating system rapidly prior to reaching colon where
microbes accumulated, and the main substrate for the
microbes to produce SCFAs is dietary fiber. Both inulin, a
kind of fructan, found in many plants, and guar gum are
prebiotic fiber (den Besten et al., 2015, 2014; Boets et al.,
2015). The beneficial effect of inulin include increasing cal-
cium absorption in colon and decreasing food intake there-
after loss-of-weight (Abrams et al., 2007; Harrold et al., 2013;
Liber and Szajewska 2013). Many clinical trials have con-
firmed a lot of benefits of inulin on health promoting functions
and reducing the risk of many diseases, leading to inulin
extensively used as nutrient supplement (Kaur and Gupta
2002). Germ free animals have trace amounts of SCFAs,
possibly from diet (Hoverstad et al., 1985; Hoverstad and
Midtvedt 1986).

Acetic acid producing bacteria are included in Acetobac-
teraceae containing 10 genera which can oxidize sugars or
ethanol to produce acetic acid during fermentation (Raspor
and Goranovic 2008). At least 33 strains can produce pro-
pionic acid and 225 strains can produce butyric acid by
fermenting dietary fiber in human gut (Reichardt et al., 2014;
Vital et al., 2014). More interestingly, dietary fiber can
selectively increase SCFAs producing bacterium abundance
(Zhao et al., 2018).

Short chain fatty acids play important roles in human
health. SCFAs can be used to feed colonocyte, maintain gut
barrier and inhibit pathogenic microbe proliferation due to
acidic pH condition (Hashemi et al., 2017; Cherrington et al.,
1991; Prohaszka et al., 1990; Duncan et al., 2009; Manrique
Vergara and Gonzalez Sanchez, 2017). SCFAs can work as
inhibitors to histone deacetylase (HDAC), which decreases
expression of the miR-106b family and increases p21
expression, leading to human colon cancer cell apoptosis
(Chen et al., 2003; Hu et al., 2011; Heerdt et al., 1997).
SCFAs functions as anticancer therapeutics (Chen et al.,
2003). There are three SCFAs receptors expressed in colon
epithelial cells including GPR43 (FFAR2), GPR41 (FFAR3)
and GPR109A (Karaki et al., 2008; Tazoe et al., 2009;
Ahmed et al., 2009). These receptor can trigger secretion of
the incretin hormone glucagon-like peptide (GLP)-1 to influ-
ence metabolic state and increase peripheral glucose
clearance (den Besten et al., 2015; Tolhurst et al., 2012).
GPR109A can only be activated by butyric acid, not by acetic
acid or propionic acid (Ahmed et al., 2009). Meanwhile, there
is another SCFA receptor, OLFR78, expressed in blood
vessel and activated by acetic acid and propionic acid but
not by butyric acid involved in the modulation of the blood
pressure (Pluznick et al., 2013; Pluznick 2014). In addition,
recent studies have found a panel of SCFA receptors
expressed in distinct cell types, e.g., FFAR2 and FFAR3 in
pancreatic β-cells, FFA3 in neurons, FFA2 in leukocytes, as
well as FFA2 and GPR109A in adipocytes, indicating that the
ubiquitous and cell-type specific functions of SCFAs (Ahmed
et al., 2009; Nilsson et al., 2003). Thus, gut microbiota

derived SCFAs actively participate in the host energy
hemostasis regulation, play critical regulatory functions in
brain, muscle, airway, white adipose tissue, brown adipose
tissue and blood vessel physiology (Kasubuchi et al., 2015).

A double-blind randomized placebo-controlled cross-
sectional study, where eleven normotensive subjects with no
family history of essential hypertension were recruited, has
found supplementation of miglyol rich in caprylic (8:0) and
capric acids (10:0) results in decreased diastolic blood
pressure (MacIver et al., 1990). Furthermore, rodent model
studies have shown that SCFAs administration can
decrease systolic blood pressure mediated by GPR41
expressed in vascular endothelium, while GPR41 knock out
mice have isolated systolic hypertension compared with
wild-type (WT) mice (Natarajan et al., 2016). Olfr78, a
member of the G-protein-coupled receptor family expressed
in vascular smooth muscle cells, contributes to blood pres-
sure control as Olfr78-deficient mice showed hypertension
(Miyamoto et al., 2016). Therefore, such causality studies
including randomized controlled trial and instrumental rodent
genetics model, have conclusively shown the pivotal role of
SCFAs in blood pressure regulations.

PHYTOESTROGENS

Phytoestrogens in plant can protect itself from attack by
modulation of the fertility of plant predators, vertebrate her-
bivores (Hughes, 1988). Phytoestrogens are similar to
human estrogens in structure. There are three main groups
of phytoestrogens, isoflavones, ellagitannins and lignans
(Gaya et al., 2108). In the gut, phytoestrogens can be further
metabolized to more active molecules, such as equol, O-
desmethylangolensin (O-DMA), dihydrodaidzein, dihydro-
genistein, enterolactone and enterodiol (Fig. 4) (Gaya et al.,
2108; Axelson and Setchell 1981; Wang et al., 2005). The
biosynthesis pathway of enterolactone and enterodiol have
been found from several bacterium strains metabolizing lig-
nan (Vanharanta et al., 2003). Both pinoresinol and lari-
ciresinol, precursors of enterolactone and enterodiol, are a
structural moiety in lignin. Lignin is an abundant plant-
derived polymer secondary to cellulose in amount in the
earth (Vanharanta et al., 2003). Lignin can be degraded by
gut microbiota to release lignans (DeAngelis et al., 2011).
Equol and O-DMA can be metabolized from daidzein in the
gut by several bacterium strains, such as Adlercreutzia
equolifaciens, Eggerthella sp. YY7918, Lactococcus gar-
vieae, Slackia equolifaciens, Slackia isoflavoniconvertens,
Slackia sp. NATTS (Braune and Blaut, 2018; Guadamuro
et al., 2017; Matthies et al., 2012; Frankenfeld et al., 2014).

Phytoestrogens are reported to reduce breast cancer for
postmenopausal women (Goodman et al., 2009). In animal
model, pretreatment of phytoestrogen-rich, Pueraria mirifica
tuberous powder resulted in decreasing the virulence of rat
breast tumor development induced by 7,12-dimethylbenz(a)
anthracene (Cherdshewasart et al., 2007). Besides breast
cancer, phytoestrogens may have protective action against
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prostate, bowel and other cancers, cardiovascular disease,
brain function disorders and osteoporosis (Zhang et al.,
2016; Ward and Kuhnle 2010; Arbabi et al., 2016; Menze
et al., 2015; Trieu and Uckun 1999; Chiechi et al., 1999;
Wang et al., 2011; Zhang et al., 2004; Lephart et al., 2001).
However, a few investigations implicate that the controver-
sial role of phytoestrogens including increasing colorectal
cancer and prostate cancer risk and indicate little supportive
evidence of phytoestrogens decreasing cardiovascular dis-
ease risk (Ward et al., 2010; van der Schouw et al., 2005;
Peterson et al., 2010).

Enterolactone is a biphenol, which can function as anti-
oxidant. A study shows that high serum enterolactone level
is associated with reduced CVD mortality (Vanharanta et al.,
2003). Furthermore, low serum enterolactone is associated
with increased in vivo lipid peroxidation, assessed by plasma
F2-isoprostane concentrations (Vanharanta et al., 2002). In
addition, urinary total and individual phytoestrogens were
significantly inversely associated with serum C-reactive
protein (CRP; an inflammation biomarker) (Reger et al.,
2017). Phytoestrogens can bind to estrogen receptors
(Morito et al., 2001), which either mimics estrogen or works
as antagonist (Fitzpatrick, 1999). Thus, the effects of phy-
toestrogens can be biphasic: for example, phytoestrogens
both increases vasodilation and nitric oxide metabolism that

may have a favorable impact on vascular health; on the
other hand, phytoestrogen may also have some prothrom-
botic or proinflammatory effects that may offset other bene-
fits (Herrington, 2000). Both enterolactone and enterodiol
can alleviate the effect of peripheral blood lymphocytes
activated by lipopolysaccharide (Corsini et al., 2010). Such
lymphocytes activation leads to inhibitory-κB (I-κB) degra-
dation and nuclear factor-κB (NF-κB) activation thereby
resulting in TNF-α production (Corsini et al., 2010). Thus,
both enterolactone and enterodiol may have pro-anti-in-
flammatory role.

ANTHOCYANINS

Anthocyanins are glycosyl-anthocyanidins, widely dis-
tributed in plant vacuole with pH depending color. Antho-
cyanidins are flavones with different functional groups
covalently linked to the three cycles. Anthocyanins have
been found with beneficial effects on obesity and diabetes
control, cardiovascular disease and cancer prevention, and
visual and brain function improvement (Tsuda, 2012; Han-
num, 2004). Mechanistically, the beneficial effect of antho-
cyanins on cardiovascular health include working as an
antiplatelet agent in atherosclerosis and other CVD preven-
tion, inducing nitric oxide formation in vessel thereby

Figure 4. Structural formulas of phytoesterogens and the metabolism pathways.
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enhancing vasorelaxation, protecting cardiac cells from
oxidative-stress-induced apoptosis, and increasing HDL
cholesterol as well (Gaiz et al., 2018; Stoclet et al., 1999;
Hassellund et al., 2013; Isaak et al., 2017).

Further investigations have confirmed that the beneficial
effect of some anthocyanins on atherosclerosis is mediated
by gut microbiota metabolites. Ingested dietary anthocyanins
are absorbed with a small part while large amounts are likely
to enter the colon to be degraded by gut microbiota as free
anthocyanidins and protocatechuic acid (PCA) (Fig. 5) (Aura
et al., 2005). Anthocyanidin-3-glucoside promotes reverse
cholesterol transport mediated by its gut microbiota
metabolite, PCA. PCA can reduce macrophage miR-10b
expression, therefore increasing ABCA1 and ABCG1
expression (Wang et al., 2012). Gallic acid (GA), one of the
microbiota anthocyanin metabolites, has been shown
increasing nitric oxide (NO) levels by increasing phospho-
rylation of endothelial nitric oxide synthase (eNOS) (Radtke
et al., 2004). GA inhibited angiotensin-I converting enzyme
(ACE), leading to reduced blood pressure in spontaneously
hypertensive rats (SHR) comparable to captopril (Kang
et al., 2015). These results suggest that GA isolated from
Spirogyra sp. exerts multiple therapeutic effects and has a
great potential for CVD intervention.

Anthocyanins can also modulate gut microbiota commu-
nity structure. For example, malvidin-3-glucoside can
enhance the growth of some beneficial bacterium such as
Bifidobaterium spp. and Lactobacillus spp. (Hidalgo et al.,
2012). On the other hand, gallic acid, one of the microbiota
anthocyanin metabolites, can reduce some potentially
harmful bacteria such as Clostridium histolyticum, without
negative effect on beneficial bacteria (Hidalgo et al., 2012).
Study on comparison in gut microbiota fingerprints between
cardiovascular disease patients and healthy controls has
shown that the diversity of beneficial bacteria was reduced in
patients with cardiovascular disease (Vamanu et al., 2016).
Thus, anthocyanins play critical role in shaping the micro-
biota taxonomic composition especially under CVD
conditions.

BILE ACIDS

Bile acids are synthesized from cholesterol in liver. The initial
products are chenodeoxycholic acid (CDCA) and cholic acid
(CA) (Fig. 6), and then conjugated with glycine or taurine,
stored and concentrated in gallbladder (Wahlstrom et al.,
2016; LaRusso et al., 1974). Bile acids produced in liver are
called as primary bile acids. Bile acids are released into
duodenum after meal to emulsify dietary fats and oils for
digestion and help absorb lipid soluble vitamins (Danielsson,
1963; Hollander et al., 1977; Barnard and Heaton, 1973;
Miettinen, 1971). In ileum, conjugated bile acids are then
reabsorbed and carried in the portal blood to liver. This
process is called enterohepatic circulation and preserves
more than 95% of the bile acid pool (Wahlstrom et al., 2016).
In distal ileum, conjugated bile acids are hydrolyzed to
remove glycine or taurine by bile salt hydrolase in microbes
to escape reuptake by apical sodium dependent bile acid
transporter and dehydroxylated by microbes as deoxycholic
acid or lithocholic acid, which are called as secondary bile
acids (Fig. 6), (Wahlstrom et al., 2016; Chiang, 2009). The
deconjugated bile acids are hydrophobic and it can be
excreted as feces, which constitutes the last step of reverse
cholesterol efflux to decrease circulating cholesterol (Daw-
son and Karpen, 2015), therefore the risk for atherosclerosis
can be decreased.

Bile acid can modulate gut microbiota composition by
killing bacterium in a species and dosage dependent way
(Yokota et al., 2012). Bile acids are associated with meta-
bolic disease, obesity, diarrhea, inflammatory bowel disease,
colorectal cancer and hepatocellular carcinoma as well
(Joyce and Gahan, 2016).

Bile acids can work as hormone to act on farnesoid X
receptor (FXR) and G protein-coupled membrane receptor 5
(TGR5) to decrease triglyceride accumulation, fatty acid
oxidation, decrease the expression of pro-inflammatory
cytokines and chemokines in aorta through the inactivation
of NF-κB (Levi, 2016; Porez et al., 2012).

Gut microbiota can affect cardiovascular health via sec-
ondary bile acids, deoxycholic acid and lithocholic acid, both

Figure 5. Colon microbes contribute to protocatechuic acid

biosynthesis from diet anthocyanins. R3′=H, OH or OCH3;

R5′=H, OH or OCH3; R5=OH or OCH3; R6=H or OH; R7=OH or

OCH3. R5, R7 can be glycosylated if it is a hydroxyl group.
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of which are the main ligand for TGR5 (Fiorucci et al., 2010;
Duboc et al., 2014). Primary bile acids including chen-
odeoxycholic acid and cholic acid, with FXR as their the
receptor, have distinct effects on cardiac health when com-
pared to secondary bile acids (Fiorucci et al., 2010). Con-
sistently, the serum level of primary bile acids were found
decreased while ratios of secondary bile acids to primary bile
acids were increased in cardiovascular disease patients
compared to healthy controls (Mayerhofer et al., 2017).

LIPOPOLYSACCHARIDE

Distinguished from the abovementioned gut microbiota
derived metabolites, lipopolysaccharide (LPS, also called as
endotoxin) is a component of outer-membrane of Gram-
negative bacteria with a very complicated structural formula
composed of lipid and saccharide. LPS is released from the
bacterial membrane after destruction with the capacity of
inducing systemic inflammation and sepsis (Beutler and
Rietschel, 2003). For healthy subjects, gut-blood barrier
prevents LPS entering circulating blood. However, the gut-
blood barrier leak due to dysbiosis results in bacterium
entering the bloodstream. For the periodontal patients,
bacterium can directly enter circulating blood, leading to
increased levels of circulating LPS (Fukui et al., 1991; Wang
et al., 2015; de Punder and Pruimboom, 2015; Lakio et al.,
2006).

LPS can induce foam cell formation and cholesteryl ester
accumulation from native low density lipoprotein, indicating
LPS is proatherogenic (Lakio et al., 2006; Funk et al., 1993).
LPS induces CD14 and SR-AI expression in macrophages
via JNK1, leading to oxLDL uptake and foam cell formation
(An et al., 2017). LPS binding protein (LBP) is synthesized in
liver and released to circulating blood (Schumann et al.,
1990). Serum LBP level in patients with angiographically
confirmed coronary artery disease (CAD) found significantly
higher than controls without CAD is an independent predic-
tive biomarker for total and cardiovascular mortality (Lepper
et al., 2011). Moreover, the high affinity binding complex of
LPS-LBP binds to monocyte and macrophage, triggering the
secretion of tumor necrosis factor (Schumann et al., 1990).
Toll-like receptor 4 (TLR4) is the membrane receptor of LPS,
when activated, triggering NF-κB signaling and producing
proinflammatory cytokines (Lu et al., 2008). Further, inflam-
matory caspase-4, -5 and -11 directly recognize bacte-
rial LPS, both of which trigger pyroptosis (Shi et al., 2015).
Low serum selenium or selenoprotein P (SePP) levels have
been repetitively observed in severe sepsis, and both puri-
fied SePP and synthetic peptides corresponding to the His-
rich motifs neutralized LPS (Zhao et al., 2016). Very recently,
a study shows itaconate is required for the activation of the
anti-inflammatory transcription factor Nrf2 (also known as
NFE2L2) by lipopolysaccharide in mouse and human
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macrophages via dicarboxylation of KEAP1 (Mills et al.,
2018). Taken together, LPS is a mechanistic biomarker for
CAD.

PROSPECT

More and more gut microbiota derived metabolites have
been unveiled as crucial factor contributing to cardiovascular
health and disease. Thus, a better understanding of the gut
microbe pathways involved in the biosynthesis of CVD
related metabolites would greatly facilitate managing cardiac
health especially preventing CVD.

Apparently, for mechanistic biomarker discovery and CVD
management, it is of primary importance to pinpoint the
causal role of gut microbiota derived metabolites.
Koch’s postulate, which states that a given pathogen leads
to a distinct disease, have been evolving into molecular and
ecological Koch’s postulate including CVD (Vonaesch et al.,
2018). Therefore, many ongoing efforts have been focusing
on the causality of gut microbiota derived metabolites in
CVD. Key methodologies include randomized controlled tri-
als (Tang et al., 2013; Panigrahi et al., 2017), Mendelian
randomization approach (Mendelson et al., 2017) and gno-
tobiotic animal models (Hibberd et al., 2017).

Given that diet is the most important factor shaping the
dynamics of gut microbiotia (Rothschild et al., 2018), inte-
grative studies on diet shaped microbiota-host interactions
have the potential to offer us novel insight on CVD mecha-
nisms. From the microbiota side, there is big room to study
molecular genetics mechanisms by which how the physiol-
ogy and pathology relevant microbiota taxonomic and func-
tional profiles are regulated. Of note, studies on the immune
mechanisms of CVD allow us to connect gut microbiota
derived metabolites to key immune components of distinct
immune cell and cytokine profile dynamics. We envision
discovering predicative mechanistic CVD microbiome
biomarkers and exploiting the probiotics and prebiotics
therapeutics continue to be of primary priority.
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