tomaarsen HF Staff commited on
Commit
99a5e49
·
verified ·
1 Parent(s): 4a84f1e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md CHANGED
@@ -1,4 +1,16 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
2
  dataset_info:
3
  - config_name: triplet
4
  features:
@@ -68,3 +80,61 @@ configs:
68
  - split: train
69
  path: triplet-all/train-*
70
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
+ multilinguality:
5
+ - monolingual
6
+ size_categories:
7
+ - 1M<n<10M
8
+ task_categories:
9
+ - feature-extraction
10
+ - sentence-similarity
11
+ pretty_name: NLI for SimCSE
12
+ tags:
13
+ - sentence-transformers
14
  dataset_info:
15
  - config_name: triplet
16
  features:
 
80
  - split: train
81
  path: triplet-all/train-*
82
  ---
83
+
84
+ # Dataset Card for NLI for SimCSE
85
+
86
+ This is a reformatting of the NLI for SimCSE Dataset used to train the [BGE-M3 model](https://huggingface.co/BAAI/bge-m3). See the full BGE-M3 dataset in [Shitao/bge-m3-data](https://huggingface.co/datasets/Shitao/bge-m3-data).
87
+ Despite being labeled as Natural Language Inference (NLI), this dataset can be used for training/finetuning an embedding model for semantic textual similarity.
88
+
89
+ ## Dataset Subsets
90
+
91
+ ### `triplet` subset
92
+
93
+ * Columns: "anchor", "positive", "negative"
94
+ * Column types: `str`, `str`, `str`
95
+ * Examples:
96
+ ```python
97
+ {
98
+ 'anchor': 'One of our number will carry out your instructions minutely.',
99
+ 'positive': 'A member of my team will execute your orders with immense precision.',
100
+ 'negative': 'We have no one free at the moment so you have to take action yourself.'
101
+ }
102
+ ```
103
+ * Collection strategy: Reading the jsonl file in the `en_NLI_data` directory in [Shitao/bge-m3-data](https://huggingface.co/datasets/Shitao/bge-m3-data) and taking only the first negative.
104
+ * Deduplified: No
105
+
106
+ ### `triplet-7` subset
107
+
108
+ * Columns: "anchor", "positive", "negative_1", "negative_2", "negative_3", "negative_4", "negative_5", "negative_6", "negative_7"
109
+ * Column types: `str`, `str`, `str`, `str`, `str`, `str`, `str`
110
+ * Examples:
111
+ ```python
112
+ {
113
+ 'anchor': 'One of our number will carry out your instructions minutely.',
114
+ 'positive': 'A member of my team will execute your orders with immense precision.',
115
+ 'negative_1': 'We have no one free at the moment so you have to take action yourself.',
116
+ 'negative_2': 'A poodle is running through the grass.',
117
+ 'negative_3': 'Investment and planning are growing industries in Jamaica.',
118
+ 'negative_4': 'A bearded man is rocking out on an acoustic guitar',
119
+ 'negative_5': 'The people are sunbathing on the beach.',
120
+ 'negative_6': 'A construction worker installs a door.',
121
+ 'negative_7': 'A crowd has gathered because of a dangerous situation.'
122
+ }
123
+ ```
124
+ * Collection strategy: Reading the jsonl file in the `en_NLI_data` directory in [Shitao/bge-m3-data](https://huggingface.co/datasets/Shitao/bge-m3-data) and taking all samples that have 7 negatives (which is by far the majority).
125
+ * Deduplified: No
126
+
127
+ ### `triplet-all` subset
128
+
129
+ * Columns: "anchor", "positive", "negative"
130
+ * Column types: `str`, `str`, `str`
131
+ * Examples:
132
+ ```python
133
+ {
134
+ 'anchor': 'One of our number will carry out your instructions minutely.',
135
+ 'positive': 'A member of my team will execute your orders with immense precision.',
136
+ 'negative': 'We have no one free at the moment so you have to take action yourself.'
137
+ }
138
+ ```
139
+ * Collection strategy: Reading the jsonl file in the `en_NLI_data` directory in [Shitao/bge-m3-data](https://huggingface.co/datasets/Shitao/bge-m3-data) and taking only each negative, but making a separate sample with each of the negatives.
140
+ * Deduplified: No