File size: 1,741 Bytes
88f338a
 
ff074c1
 
 
 
 
 
 
 
 
 
 
 
040c64d
 
 
 
 
 
 
 
 
 
 
 
ff074c1
88f338a
 
 
 
 
 
 
 
 
 
 
 
 
 
ff074c1
 
 
 
040c64d
 
 
 
88f338a
 
 
 
6f1050b
 
 
 
 
 
88f338a
82d35fe
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
dataset_info:
- config_name: corpus
  features:
  - name: _id
    dtype: string
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 346228
    num_examples: 5046
  download_size: 227617
  dataset_size: 346228
- config_name: queries
  features:
  - name: _id
    dtype: string
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 3087
    num_examples: 50
  download_size: 3694
  dataset_size: 3087
- config_name: relevance
  features:
  - name: query-id
    dtype: string
  - name: positive-corpus-ids
    sequence: string
  - name: bm25-ranked-ids
    sequence: string
  splits:
  - name: train
    num_bytes: 2463921
    num_examples: 50
  download_size: 441902
  dataset_size: 2463921
configs:
- config_name: corpus
  data_files:
  - split: train
    path: corpus/train-*
- config_name: queries
  data_files:
  - split: train
    path: queries/train-*
- config_name: relevance
  data_files:
  - split: train
    path: relevance/train-*
language:
- en
tags:
- sentence-transformers
size_categories:
- 1K<n<10K
---

# NanoBEIR QuoraRetrieval with BM25 rankings
This dataset is an updated variant of [NanoQuoraRetrieval](https://huggingface.co/datasets/zeta-alpha-ai/NanoQuoraRetrieval), which is a subset of the QuoraRetrieval dataset from the Benchmark for Information Retrieval (BEIR).
QuoraRetrieval was created as a subset of the rather large BEIR, designed to be more efficient to run. This dataset adds a `bm25-ranked-ids` column to the `relevance` subset, which contains a ranking of every single passage in the corpus to the query.

This dataset is used in Sentence Transformers for evaluating CrossEncoder (i.e. reranker) models on NanoBEIR by reranking the top *k* results from BM25.