File size: 1,714 Bytes
b5dc339
 
93789ee
 
 
 
 
 
 
 
 
 
 
 
4ecc073
 
 
 
 
 
 
 
 
 
 
 
93789ee
b5dc339
 
 
 
 
 
 
 
 
 
 
 
 
 
93789ee
 
 
 
4ecc073
 
 
 
b5dc339
 
 
 
79256fa
 
 
 
 
 
b5dc339
ba61850
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
---
dataset_info:
- config_name: corpus
  features:
  - name: _id
    dtype: string
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 4201493
    num_examples: 4598
  download_size: 2528655
  dataset_size: 4201493
- config_name: queries
  features:
  - name: _id
    dtype: string
  - name: text
    dtype: string
  splits:
  - name: train
    num_bytes: 3531
    num_examples: 50
  download_size: 4006
  dataset_size: 3531
- config_name: relevance
  features:
  - name: query-id
    dtype: string
  - name: positive-corpus-ids
    sequence: string
  - name: bm25-ranked-ids
    sequence: string
  splits:
  - name: train
    num_bytes: 2256010
    num_examples: 50
  download_size: 404904
  dataset_size: 2256010
configs:
- config_name: corpus
  data_files:
  - split: train
    path: corpus/train-*
- config_name: queries
  data_files:
  - split: train
    path: queries/train-*
- config_name: relevance
  data_files:
  - split: train
    path: relevance/train-*
language:
- en
tags:
- sentence-transformers
size_categories:
- 1K<n<10K
---

# NanoBEIR FiQA2018 with BM25 rankings
This dataset is an updated variant of [NanoFiQA2018](https://huggingface.co/datasets/zeta-alpha-ai/NanoFiQA2018), which is a subset of the FiQA2018 dataset from the Benchmark for Information Retrieval (BEIR).
FiQA2018 was created as a subset of the rather large BEIR, designed to be more efficient to run. This dataset adds a `bm25-ranked-ids` column to the `relevance` subset, which contains a ranking of every single passage in the corpus to the query.

This dataset is used in Sentence Transformers for evaluating CrossEncoder (i.e. reranker) models on NanoBEIR by reranking the top *k* results from BM25.