Felix
commited on
Commit
•
4ab2261
1
Parent(s):
0ffaa3c
remove swefracas and add swemnli
Browse files- data/swemnli/swemnli_dev.jsonl +3 -0
- data/swemnli/swemnli_test.jsonl +3 -0
- data/swemnli/swemnli_train.jsonl +3 -0
- superlim-2.py +14 -13
data/swemnli/swemnli_dev.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7a09e1ccebab854a33b9d182193e456fe4ecf69fe24f791e173ba621823fc85f
|
3 |
+
size 2362732
|
data/swemnli/swemnli_test.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:232a35144b8c6a13b71e08be5622faeb8c955b43a7dc9572784f9ea66464061a
|
3 |
+
size 54611
|
data/swemnli/swemnli_train.jsonl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d701f7d8e1e214cddb10399db415e00454994662e135a32bf6aaa96dadf4e3e1
|
3 |
+
size 96150107
|
superlim-2.py
CHANGED
@@ -65,7 +65,7 @@ _SweFaq_DESCRIPTION = """\
|
|
65 |
Vanliga frågor från svenska myndigheters webbsidor med svar i randomiserad ordning"""
|
66 |
_SweFaq_CITATION = """\
|
67 |
"""
|
68 |
-
|
69 |
A textual inference/entailment problem set, derived from FraCas. The original English Fracas [1] was converted to html and edited by Bill MacCartney [2],
|
70 |
and then automatically translated to Swedish by Peter Ljunglöf and Magdalena Siverbo [3]. The current tabular form of the set was created by Aleksandrs Berdicevskis
|
71 |
by merging the Swedish and English versions and removing some of the problems. Finally, Lars Borin went through all the translations, correcting and Swedifying them manually.
|
@@ -123,9 +123,9 @@ _TASKS = {
|
|
123 |
"swefaq": "swefaq",
|
124 |
"swepar": "sweparaphrase",
|
125 |
"swesat": "swesat-synonyms",
|
|
|
126 |
"swewic": "swewic",
|
127 |
"swedn": "swedn",
|
128 |
-
"swefracas": "swefracas",
|
129 |
"swediagnostics": "swediagnostics"
|
130 |
}
|
131 |
|
@@ -176,7 +176,7 @@ class SuperLim(datasets.GeneratorBasedBuilder):
|
|
176 |
datasets.BuilderConfig(name="swedn", version=VERSION, description=_SweDN_DESCRIPTION),
|
177 |
datasets.BuilderConfig(name="swewic", version=VERSION, description=_SweWic_DESCRIPTION),
|
178 |
datasets.BuilderConfig(name="argumentation_sent", version=VERSION, description=_argumentation_sentences_DESCRIPTION),
|
179 |
-
datasets.BuilderConfig(name="
|
180 |
datasets.BuilderConfig(name="swediagnostics", version=VERSION, description=_SweDiag_DESCRIPTION)
|
181 |
]
|
182 |
|
@@ -272,13 +272,13 @@ class SuperLim(datasets.GeneratorBasedBuilder):
|
|
272 |
"sentence": datasets.Value("string")
|
273 |
}
|
274 |
)
|
275 |
-
elif self.config.name == '
|
276 |
features = datasets.Features(
|
277 |
{
|
278 |
"id": datasets.Value("string"),
|
279 |
-
"
|
280 |
-
"
|
281 |
-
"
|
282 |
}
|
283 |
)
|
284 |
elif self.config.name == 'swediagnostics':
|
@@ -335,7 +335,7 @@ class SuperLim(datasets.GeneratorBasedBuilder):
|
|
335 |
},
|
336 |
)
|
337 |
splits.append(split_test)
|
338 |
-
if self.config.name in ("absabank-imm", "dalaj-ged", "swefaq", "swewic", "swedn", "swepar"):
|
339 |
data_dir_dev = dl_manager.download_and_extract(os.path.join(_URL,DATA_FOLDER,f"{_TASKS[self.config.name]}_dev.{file_format}"))
|
340 |
split_dev = datasets.SplitGenerator(
|
341 |
name=datasets.Split.VALIDATION,
|
@@ -345,7 +345,7 @@ class SuperLim(datasets.GeneratorBasedBuilder):
|
|
345 |
},
|
346 |
)
|
347 |
splits.append(split_dev)
|
348 |
-
if self.config.name in ("absabank-imm", "dalaj-ged", "swefaq", "swewic", "argumentation_sent", "swedn", "swepar"):
|
349 |
data_dir_train = dl_manager.download_and_extract(os.path.join(_URL,DATA_FOLDER,f"{_TASKS[self.config.name]}_train.{file_format}"))
|
350 |
split_train = datasets.SplitGenerator(
|
351 |
name=datasets.Split.TRAIN,
|
@@ -464,11 +464,12 @@ class SuperLim(datasets.GeneratorBasedBuilder):
|
|
464 |
'label': row['label']
|
465 |
}
|
466 |
|
467 |
-
elif self.config.name == "
|
468 |
yield key, {
|
469 |
-
'
|
470 |
-
'
|
471 |
-
'
|
|
|
472 |
}
|
473 |
|
474 |
elif self.config.name == "swedn":
|
|
|
65 |
Vanliga frågor från svenska myndigheters webbsidor med svar i randomiserad ordning"""
|
66 |
_SweFaq_CITATION = """\
|
67 |
"""
|
68 |
+
_SweMNLI_DESCRIPTION = """\
|
69 |
A textual inference/entailment problem set, derived from FraCas. The original English Fracas [1] was converted to html and edited by Bill MacCartney [2],
|
70 |
and then automatically translated to Swedish by Peter Ljunglöf and Magdalena Siverbo [3]. The current tabular form of the set was created by Aleksandrs Berdicevskis
|
71 |
by merging the Swedish and English versions and removing some of the problems. Finally, Lars Borin went through all the translations, correcting and Swedifying them manually.
|
|
|
123 |
"swefaq": "swefaq",
|
124 |
"swepar": "sweparaphrase",
|
125 |
"swesat": "swesat-synonyms",
|
126 |
+
"swemnli": "swemnli",
|
127 |
"swewic": "swewic",
|
128 |
"swedn": "swedn",
|
|
|
129 |
"swediagnostics": "swediagnostics"
|
130 |
}
|
131 |
|
|
|
176 |
datasets.BuilderConfig(name="swedn", version=VERSION, description=_SweDN_DESCRIPTION),
|
177 |
datasets.BuilderConfig(name="swewic", version=VERSION, description=_SweWic_DESCRIPTION),
|
178 |
datasets.BuilderConfig(name="argumentation_sent", version=VERSION, description=_argumentation_sentences_DESCRIPTION),
|
179 |
+
datasets.BuilderConfig(name="swemnli", version=VERSION, description=_SweMNLI_DESCRIPTION),
|
180 |
datasets.BuilderConfig(name="swediagnostics", version=VERSION, description=_SweDiag_DESCRIPTION)
|
181 |
]
|
182 |
|
|
|
272 |
"sentence": datasets.Value("string")
|
273 |
}
|
274 |
)
|
275 |
+
elif self.config.name == 'swemnli':
|
276 |
features = datasets.Features(
|
277 |
{
|
278 |
"id": datasets.Value("string"),
|
279 |
+
"premise": datasets.Value("string"),
|
280 |
+
"hypothesis": datasets.Value("string"),
|
281 |
+
"label": datasets.Value("string")
|
282 |
}
|
283 |
)
|
284 |
elif self.config.name == 'swediagnostics':
|
|
|
335 |
},
|
336 |
)
|
337 |
splits.append(split_test)
|
338 |
+
if self.config.name in ("absabank-imm", "dalaj-ged", "swefaq", "swewic", "swemnli", "swedn", "swepar"):
|
339 |
data_dir_dev = dl_manager.download_and_extract(os.path.join(_URL,DATA_FOLDER,f"{_TASKS[self.config.name]}_dev.{file_format}"))
|
340 |
split_dev = datasets.SplitGenerator(
|
341 |
name=datasets.Split.VALIDATION,
|
|
|
345 |
},
|
346 |
)
|
347 |
splits.append(split_dev)
|
348 |
+
if self.config.name in ("absabank-imm", "dalaj-ged", "swefaq", "swewic", "swemnli", "argumentation_sent", "swedn", "swepar"):
|
349 |
data_dir_train = dl_manager.download_and_extract(os.path.join(_URL,DATA_FOLDER,f"{_TASKS[self.config.name]}_train.{file_format}"))
|
350 |
split_train = datasets.SplitGenerator(
|
351 |
name=datasets.Split.TRAIN,
|
|
|
464 |
'label': row['label']
|
465 |
}
|
466 |
|
467 |
+
elif self.config.name == "swemnli":
|
468 |
yield key, {
|
469 |
+
'id': row['id'],
|
470 |
+
'premise': row['premise'],
|
471 |
+
'hypothesis': row['hypothesis'],
|
472 |
+
'label': row['label']
|
473 |
}
|
474 |
|
475 |
elif self.config.name == "swedn":
|