Felix commited on
Commit
4ab2261
1 Parent(s): 0ffaa3c

remove swefracas and add swemnli

Browse files
data/swemnli/swemnli_dev.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7a09e1ccebab854a33b9d182193e456fe4ecf69fe24f791e173ba621823fc85f
3
+ size 2362732
data/swemnli/swemnli_test.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:232a35144b8c6a13b71e08be5622faeb8c955b43a7dc9572784f9ea66464061a
3
+ size 54611
data/swemnli/swemnli_train.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d701f7d8e1e214cddb10399db415e00454994662e135a32bf6aaa96dadf4e3e1
3
+ size 96150107
superlim-2.py CHANGED
@@ -65,7 +65,7 @@ _SweFaq_DESCRIPTION = """\
65
  Vanliga frågor från svenska myndigheters webbsidor med svar i randomiserad ordning"""
66
  _SweFaq_CITATION = """\
67
  """
68
- _SweFracas_DESCRIPTION = """\
69
  A textual inference/entailment problem set, derived from FraCas. The original English Fracas [1] was converted to html and edited by Bill MacCartney [2],
70
  and then automatically translated to Swedish by Peter Ljunglöf and Magdalena Siverbo [3]. The current tabular form of the set was created by Aleksandrs Berdicevskis
71
  by merging the Swedish and English versions and removing some of the problems. Finally, Lars Borin went through all the translations, correcting and Swedifying them manually.
@@ -123,9 +123,9 @@ _TASKS = {
123
  "swefaq": "swefaq",
124
  "swepar": "sweparaphrase",
125
  "swesat": "swesat-synonyms",
 
126
  "swewic": "swewic",
127
  "swedn": "swedn",
128
- "swefracas": "swefracas",
129
  "swediagnostics": "swediagnostics"
130
  }
131
 
@@ -176,7 +176,7 @@ class SuperLim(datasets.GeneratorBasedBuilder):
176
  datasets.BuilderConfig(name="swedn", version=VERSION, description=_SweDN_DESCRIPTION),
177
  datasets.BuilderConfig(name="swewic", version=VERSION, description=_SweWic_DESCRIPTION),
178
  datasets.BuilderConfig(name="argumentation_sent", version=VERSION, description=_argumentation_sentences_DESCRIPTION),
179
- datasets.BuilderConfig(name="swefracas", version=VERSION, description=_SweFracas_DESCRIPTION),
180
  datasets.BuilderConfig(name="swediagnostics", version=VERSION, description=_SweDiag_DESCRIPTION)
181
  ]
182
 
@@ -272,13 +272,13 @@ class SuperLim(datasets.GeneratorBasedBuilder):
272
  "sentence": datasets.Value("string")
273
  }
274
  )
275
- elif self.config.name == 'swefracas':
276
  features = datasets.Features(
277
  {
278
  "id": datasets.Value("string"),
279
- "original_id": datasets.Value("string"),
280
- "attribute": datasets.Value("string"),
281
- "value": datasets.Value("string")
282
  }
283
  )
284
  elif self.config.name == 'swediagnostics':
@@ -335,7 +335,7 @@ class SuperLim(datasets.GeneratorBasedBuilder):
335
  },
336
  )
337
  splits.append(split_test)
338
- if self.config.name in ("absabank-imm", "dalaj-ged", "swefaq", "swewic", "swedn", "swepar"):
339
  data_dir_dev = dl_manager.download_and_extract(os.path.join(_URL,DATA_FOLDER,f"{_TASKS[self.config.name]}_dev.{file_format}"))
340
  split_dev = datasets.SplitGenerator(
341
  name=datasets.Split.VALIDATION,
@@ -345,7 +345,7 @@ class SuperLim(datasets.GeneratorBasedBuilder):
345
  },
346
  )
347
  splits.append(split_dev)
348
- if self.config.name in ("absabank-imm", "dalaj-ged", "swefaq", "swewic", "argumentation_sent", "swedn", "swepar"):
349
  data_dir_train = dl_manager.download_and_extract(os.path.join(_URL,DATA_FOLDER,f"{_TASKS[self.config.name]}_train.{file_format}"))
350
  split_train = datasets.SplitGenerator(
351
  name=datasets.Split.TRAIN,
@@ -464,11 +464,12 @@ class SuperLim(datasets.GeneratorBasedBuilder):
464
  'label': row['label']
465
  }
466
 
467
- elif self.config.name == "swefracas":
468
  yield key, {
469
- 'original_id': row['original_id'],
470
- 'attribute': row['attribute'],
471
- 'value': row['value']
 
472
  }
473
 
474
  elif self.config.name == "swedn":
 
65
  Vanliga frågor från svenska myndigheters webbsidor med svar i randomiserad ordning"""
66
  _SweFaq_CITATION = """\
67
  """
68
+ _SweMNLI_DESCRIPTION = """\
69
  A textual inference/entailment problem set, derived from FraCas. The original English Fracas [1] was converted to html and edited by Bill MacCartney [2],
70
  and then automatically translated to Swedish by Peter Ljunglöf and Magdalena Siverbo [3]. The current tabular form of the set was created by Aleksandrs Berdicevskis
71
  by merging the Swedish and English versions and removing some of the problems. Finally, Lars Borin went through all the translations, correcting and Swedifying them manually.
 
123
  "swefaq": "swefaq",
124
  "swepar": "sweparaphrase",
125
  "swesat": "swesat-synonyms",
126
+ "swemnli": "swemnli",
127
  "swewic": "swewic",
128
  "swedn": "swedn",
 
129
  "swediagnostics": "swediagnostics"
130
  }
131
 
 
176
  datasets.BuilderConfig(name="swedn", version=VERSION, description=_SweDN_DESCRIPTION),
177
  datasets.BuilderConfig(name="swewic", version=VERSION, description=_SweWic_DESCRIPTION),
178
  datasets.BuilderConfig(name="argumentation_sent", version=VERSION, description=_argumentation_sentences_DESCRIPTION),
179
+ datasets.BuilderConfig(name="swemnli", version=VERSION, description=_SweMNLI_DESCRIPTION),
180
  datasets.BuilderConfig(name="swediagnostics", version=VERSION, description=_SweDiag_DESCRIPTION)
181
  ]
182
 
 
272
  "sentence": datasets.Value("string")
273
  }
274
  )
275
+ elif self.config.name == 'swemnli':
276
  features = datasets.Features(
277
  {
278
  "id": datasets.Value("string"),
279
+ "premise": datasets.Value("string"),
280
+ "hypothesis": datasets.Value("string"),
281
+ "label": datasets.Value("string")
282
  }
283
  )
284
  elif self.config.name == 'swediagnostics':
 
335
  },
336
  )
337
  splits.append(split_test)
338
+ if self.config.name in ("absabank-imm", "dalaj-ged", "swefaq", "swewic", "swemnli", "swedn", "swepar"):
339
  data_dir_dev = dl_manager.download_and_extract(os.path.join(_URL,DATA_FOLDER,f"{_TASKS[self.config.name]}_dev.{file_format}"))
340
  split_dev = datasets.SplitGenerator(
341
  name=datasets.Split.VALIDATION,
 
345
  },
346
  )
347
  splits.append(split_dev)
348
+ if self.config.name in ("absabank-imm", "dalaj-ged", "swefaq", "swewic", "swemnli", "argumentation_sent", "swedn", "swepar"):
349
  data_dir_train = dl_manager.download_and_extract(os.path.join(_URL,DATA_FOLDER,f"{_TASKS[self.config.name]}_train.{file_format}"))
350
  split_train = datasets.SplitGenerator(
351
  name=datasets.Split.TRAIN,
 
464
  'label': row['label']
465
  }
466
 
467
+ elif self.config.name == "swemnli":
468
  yield key, {
469
+ 'id': row['id'],
470
+ 'premise': row['premise'],
471
+ 'hypothesis': row['hypothesis'],
472
+ 'label': row['label']
473
  }
474
 
475
  elif self.config.name == "swedn":