File size: 30,268 Bytes
6207f8f c7a5837 4fab6b9 c7a5837 1889f0b c7a5837 0ffaa3c c7a5837 6c3740d c7a5837 b47191a c7a5837 b47191a c7a5837 1cb95de bdf230e d957bab bdf230e b1444a3 e6f8644 e3e784a 1b998c2 e3e784a 496fde2 e3e784a 6c3740d e3e784a 496fde2 b47191a c7a5837 21bb2b1 c7a5837 1889f0b 496fde2 a01bec3 c7a5837 496fde2 c7a5837 6c3740d c7a5837 496fde2 9b980f5 c7a5837 496fde2 fa5311d 496fde2 fa5311d 48e6c05 fa5311d 496fde2 fa5311d b808a9e fa5311d b0d9e5e fa5311d c7a5837 fa5311d d3d5a98 fa5311d 496fde2 fa5311d 13105d9 fa5311d 496fde2 fa5311d c7a5837 fa5311d 3bcb3c1 fa5311d 3bcb3c1 fa5311d 6c3740d fa5311d befc158 fa5311d c7a5837 fa5311d 8c7b3c5 fa5311d c7a5837 59a5da9 3bcb3c1 59a5da9 c7a5837 fa5311d 310146c fa5311d c7a5837 fa5311d 310146c fa5311d c7a5837 fa5311d 3affcf8 fa5311d b47191a c7a5837 285c6bd bd4b9b1 1d799ca 11586d5 1d799ca eceb157 11586d5 1d799ca b318dab 6c3740d eceb157 11586d5 1d799ca 4fab6b9 bd4b9b1 4fab6b9 496fde2 4fab6b9 496fde2 a01bec3 4fab6b9 496fde2 4fab6b9 dda7cb6 496fde2 e448142 496fde2 4fab6b9 e448142 4fab6b9 5ef976d cf8f9b7 5ef976d 4fab6b9 496fde2 514ad8d 496fde2 4fab6b9 a1589d6 4fab6b9 15f54c7 4fab6b9 6c3740d 496fde2 4fab6b9 374ecc4 4fab6b9 374ecc4 4fab6b9 ccae210 4fab6b9 83770ba 4fab6b9 83770ba 4fab6b9 b47191a 6f5a36d eceb157 6f5a36d b47191a eceb157 b47191a 4fab6b9 bd4e502 6f5a36d bd4e502 6f5a36d b47191a 4fab6b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 |
import os
import datasets
import pandas as pd
_CITATION = """\
"""
# You can copy an official description
_DESCRIPTION = """\
"""
_HOMEPAGE = ""
_LICENSE = ""
_SUPERLIM_CITATION = """\
Yvonne Adesam, Aleksandrs Berdicevskis, Felix Morger (2020): SwedishGLUE – Towards a Swedish Test Set for Evaluating Natural Language Understanding Models BibTeX
[1] Original Absabank:
Jacobo Rouces, Lars Borin, Nina Tahmasebi (2020): Creating an Annotated Corpus for Aspect-Based Sentiment Analysis in Swedish, in Proceedings of the 5th conference in Digital Humanities in the Nordic Countries, Riga, Latvia, October 21-23, 2020. BibTeX
[2] DaLAJ:
Volodina, Elena, Yousuf Ali Mohammed, and Julia Klezl (2021). DaLAJ - a dataset for linguistic acceptability judgments for Swedish. In Proceedings of the 10th Workshop on Natural Language Processing for Computer Assisted Language Learning (NLP4CALL 2021). Linköping Electronic Conference Proceedings 177:3, s. 28-37. https://ep.liu.se/ecp/177/003/ecp2021177003.pdf
[3] Analogy:
Tosin Adewumi, Foteini Liwicki, Markus Liwicki. (2020). Corpora compared: The case of the Swedish Gigaword & Wikipedia corpora. In: Proceedings of the 8th SLTC, Gothenburg. arXiv preprint arXiv:2011.03281
[4] Swedish Test Set for SemEval 2020 Task 1:
Unsupervised Lexical Semantic Change Detection: Dominik Schlechtweg, Barbara McGillivray, Simon Hengchen, Haim Dubossarsky, Nina Tahmasebi (2020): SemEval-2020 Task 1: Unsupervised Lexical Semantic Change Detection, in Proceedings of the Fourteenth Workshop on Semantic Evaluation (SemEval2020), Barcelona, Spain (Online), December 12, 2020. BibTeX
[5] Winogender:
Saga Hansson, Konstantinos Mavromatakis, Yvonne Adesam, Gerlof Bouma and Dana Dannélls (2021). The Swedish Winogender Dataset. In The 23rd Nordic Conference on Computational Linguistics (NoDaLiDa 2021), Reykjavik.
[6] SuperSim:
Hengchen, Simon and Tahmasebi, Nina (2021). SuperSim: a test set for word similarity and relatedness in Swedish. In The 23rd Nordic Conference on Computational Linguistics (NoDaLiDa 2021), Reykjavik. arXiv preprint arXiv:2014.05228
"""
_SUPERLIM_DESCRIPTION = """\
SuperLim, A standardized suite for evaluation and analysis of Swedish natural language understanding systems.
"""
_ABSABank_imm_DESCRIPTION = """\
Absabank-Imm (where ABSA stands for "Aspect-Based Sentiment Analysis" and Imm for "Immigration") is a subset of the Swedish ABSAbank, created to be a part of the SuperLim collection. In Absabank-Imm, texts and paragraphs are manually labelled according to the sentiment (on 1--5 scale) that the author expresses towards immigration in Sweden (this task is known as aspect-based sentiment analysis or stance analysis). To create Absabank-Imm, the original Absabank has been substantially reformatted, but no changes to the annotation were made. The dataset contains 4872 short texts.
"""
_DaLAJ_DESCRIPTION = """\
Determine whether a sentence is correct Swedish or not.
"""
_DaLAJ_CITATION = """\
[1] Original Absabank:
Jacobo Rouces, Lars Borin, Nina Tahmasebi (2020): Creating an Annotated Corpus for Aspect-Based Sentiment Analysis in Swedish, in Proceedings of the 5th conference in Digital Humanities in the Nordic Countries, Riga, Latvia, October 21-23, 2020. BibTeX
[2] DaLAJ:
Volodina, Elena, Yousuf Ali Mohammed, and Julia Klezl (2021). DaLAJ - a dataset for linguistic acceptability judgments for Swedish. In Proceedings of the 10th Workshop on Natural Language Processing for Computer Assisted Language Learning (NLP4CALL 2021). Linköping Electronic Conference Proceedings 177:3, s. 28-37. https://ep.liu.se/ecp/177/003/ecp2021177003.pdf
"""
_SweAna_DESCRIPTION = """\
The Swedish analogy test set follows the format of the original Google version. However, it is bigger and balanced across the 2 major categories,
having a total of 20,638 samples, made up of 10,381 semantic and 10,257 syntactic samples. It is also roughly balanced across the syntactic subsections.
There are 5 semantic subsections and 6 syntactic subsections. The dataset was constructed, partly using the samples in the English version,
with the help of tools dedicated to Swedish translation and it was proof-read for corrections by two native speakers (with a percentage agreement of 98.93\%)."""
_SweAna_CITATION = """\
[1] Original Absabank:
Jacobo Rouces, Lars Borin, Nina Tahmasebi (2020): Creating an Annotated Corpus for Aspect-Based Sentiment Analysis in Swedish, in Proceedings of the 5th conference in Digital Humanities in the Nordic Countries, Riga, Latvia, October 21-23, 2020. BibTeX
"""
_SweDiag_DESCRIPTION = """\
Färdig preliminär översättning av SuperGLUE diagnostik. Datan innehåller alla ursprungliga annoterade satspar från SuperGLUE tillsammans
med deras svenska översättningar."""
_SweDiag_CITATION = """\
"""
_SweDN_DESCRIPTION = """\
AbstractThe SWE-DN corpus is based on 1,963,576 news articles from the Swedish newspaper Dagens Nyheter (DN) during the years 2000--2020. The articles are filtered to resemble the CNN/DailyMail dataset both regarding textual structure"""
_SweDiag_CITATION = """\
"""
_SweFaq_DESCRIPTION = """\
Vanliga frågor från svenska myndigheters webbsidor med svar i randomiserad ordning"""
_SweFaq_CITATION = """\
"""
_SweNLI_DESCRIPTION = """\
A textual inference/entailment problem set, derived from FraCas. The original English Fracas [1] was converted to html and edited by Bill MacCartney [2],
and then automatically translated to Swedish by Peter Ljunglöf and Magdalena Siverbo [3]. The current tabular form of the set was created by Aleksandrs Berdicevskis
by merging the Swedish and English versions and removing some of the problems. Finally, Lars Borin went through all the translations, correcting and Swedifying them manually.
As a result, many translations are rather liberal and diverge noticeably from the English original."""
_SweFracas_CITATION = """\
"""
_SwePar_DESCRIPTION = """\
SweParaphrase is a subset of the automatically translated Swedish Semantic Textual Similarity dataset (Isbister and Sahlgren, 2020).
It consists of 165 manually corrected Swedish sentence pairs paired with the original English sentences and their similarity scores
ranging between 0 (no meaning overlap) and 5 (meaning equivalence). These scores were taken from the English data, they were assigned
by Crowdsourcing through Mechanical Turk. Each sentence pair belongs to one genre (e.g. news, forums or captions).
The task is to determine how similar two sentences are."""
_SwePar_CITATION = """\
"""
_SweSat_DESCRIPTION = """\
The dataset provides a gold standard for Swedish word synonymy/definition. The test items are collected from the Swedish Scholastic
Aptitude Test (högskoleprovet), currently spanning the years 2006--2021 and 822 vocabulary test items. The task for the tested system
is to determine which synonym or definition of five alternatives is correct for each test item.
"""
_SweSat_CITATION = """\
"""
_SweSim_DESCRIPTION = """\
SuperSim is a large-scale similarity and relatedness test set for Swedish built with expert human judgments. The test set is composed of 1360 word-pairs independently judged for both relatedness and similarity by five annotators."""
_SweWinogender_DESCRIPTION = """\
The SweWinogender test set is diagnostic dataset to measure gender bias in coreference resolution. It is modelled after the English Winogender benchmark,
and is released with reference statistics on the distribution of men and women between occupations and the association between gender and occupation in modern corpus material."""
_SweWinograd_DESCRIPTION = """\
SweWinograd is a pronoun resolution test set, containing constructed items in the style of Winograd schema’s. The interpretation of the target pronouns is determined by (common sense)
reasoning and knowledge, and not by syntactic constraints, lexical distributional information or discourse structuring patterns.
The dataset contains 90 multiple choice with multiple correct answers test items."""
_SweWic_DESCRIPTION = """\
The Swedish Word-in-Context dataset provides a benchmark for evaluating distributional models of word meaning, in particular context-sensitive/dynamic models. Constructed following the principles of the (English)
Word-in-Context dataset, SweWiC consists of 1000 sentence pairs, where each sentence in a pair contains an occurence of a potentially ambiguous focus word specific to that pair. The question posed to the tested
system is whether these two occurrences represent instances of the same word sense. There are 500 same-sense pairs and 500 different-sense pairs."""
_argumentation_sentences_DESCRIPTION = """\
Argumentation sentences is a translated corpus for the task of identifying stance in relation to a topic. It consists of sentences labeled with pro, con or non in relation to one of six topics.
The original dataset can be found here https://github.com/trtm/AURC. The test set is manually corrected translations, the training set is machine translated. """
_argumentation_sentences_DESCRIPTION_CITATION = """\
"""
_RELEASE_VERSION = "2.0.2"
_GH_REPOSITORY = "https://raw.githubusercontent.com/spraakbanken/SuperLim-2/"
_URL = f"{_GH_REPOSITORY}/{_RELEASE_VERSION}/"
_TASKS = {
"absabank-imm": "absabank-imm",
"argumentation_sent":"argumentation-sentences",
"dalaj-ged": "dalaj-ged-superlim",
"sweana": "sweanalogy",
"swediagnostics": "swediagnostics",
"swedn": "swedn",
"swefaq": "swefaq",
"swenli": "swenli",
"swepar": "sweparaphrase",
"swesat": "swesat-synonyms",
"swesim_relatedness": "supersim-superlim-relatedness",
"swesim_similarity": "supersim-superlim-similarity",
"swewic": "swewic",
"swewinogender": "swewinogender",
"swewinograd": "swewinograd"
}
class SuperLimConfig(datasets.BuilderConfig):
"""BuilderConfig for SuperLim."""
def __init__(self, features, data_url, citation, url, label_classes=("False", "True"), **kwargs):
"""BuilderConfig for SuperLim.
Args:
features: `list[string]`, list of the features that will appear in the
feature dict. Should not include "label".
data_url: `string`, url to download the zip file from.
citation: `string`, citation for the data set.
url: `string`, url for information about the data set.
label_classes: `list[string]`, the list of classes for the label if the
label is present as a string. Non-string labels will be cast to either
'False' or 'True'.
**kwargs: keyword arguments forwarded to super.
"""
# Version history:
# 1.0.2: Fixed non-nondeterminism in ReCoRD.
# 1.0.1: Change from the pre-release trial version of SuperLim (v1.9) to
# the full release (v2.0).
# 1.0.0: S3 (new shuffling, sharding and slicing mechanism).
# 0.0.2: Initial version.
super(SuperLimConfig, self).__init__(version=datasets.Version("2.0.0"), **kwargs)
self.features = features
self.label_classes = label_classes
self.data_url = data_url
self.citation = citation
self.url = url
class SuperLim(datasets.GeneratorBasedBuilder):
"""The SuperLim benchmark."""
VERSION = datasets.Version("2.0.3")
BUILDER_CONFIGS = [
datasets.BuilderConfig(name="absabank-imm", version=VERSION, description=_ABSABank_imm_DESCRIPTION),
datasets.BuilderConfig(name="argumentation_sent", version=VERSION, description=_argumentation_sentences_DESCRIPTION),
datasets.BuilderConfig(name="dalaj-ged", version=VERSION, description=_DaLAJ_DESCRIPTION),
datasets.BuilderConfig(name="sweana", version=VERSION, description=_SweAna_DESCRIPTION),
datasets.BuilderConfig(name="swediagnostics", version=VERSION, description=_SweDiag_DESCRIPTION),
datasets.BuilderConfig(name="swedn", version=VERSION, description=_SweDN_DESCRIPTION),
datasets.BuilderConfig(name="swefaq", version=VERSION, description=_SweFaq_DESCRIPTION),
datasets.BuilderConfig(name="swenli", version=VERSION, description=_SweNLI_DESCRIPTION),
datasets.BuilderConfig(name="swepar", version=VERSION, description=_SwePar_DESCRIPTION),
datasets.BuilderConfig(name="swesat", version=VERSION, description=_SweSat_DESCRIPTION),
datasets.BuilderConfig(name="swesim_relatedness", version=VERSION, description=_SweSim_DESCRIPTION),
datasets.BuilderConfig(name="swesim_similarity", version=VERSION, description=_SweSim_DESCRIPTION),
datasets.BuilderConfig(name="swewic", version=VERSION, description=_SweWic_DESCRIPTION),
datasets.BuilderConfig(name="swewinogender", version=VERSION, description=_SweWinogender_DESCRIPTION),
datasets.BuilderConfig(name="swewinograd", version=VERSION, description=_SweWinograd_DESCRIPTION)
]
def _info(self):
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
if self.config.name == 'absabank-imm': # This is the name of the configuration selected in BUILDER_CONFIGS above
features = datasets.Features({
"id": datasets.Value("string"),
"text": datasets.Value("string"),
"label": datasets.Value(dtype='float32')
})
elif self.config.name == 'argumentation_sent':
features = datasets.Features({
"sentence_id": datasets.Value("string"),
"topic": datasets.Value("string"),
"label": datasets.ClassLabel(num_classes=3, names=['pro', 'con', 'non']),
"sentence": datasets.Value("string")
})
elif self.config.name == "dalaj-ged":
features = datasets.Features({
"sentence": datasets.Value("string"),
"label": datasets.ClassLabel(num_classes=2, names=['correct', 'incorrect']),
"meta": datasets.Features({
'error_span': datasets.Features({
'start': datasets.Value(dtype='int64'),
'stop': datasets.Value(dtype='int64')
}),
'confusion_pair': datasets.Features({
'incorrect_span': datasets.Value("string"),
'correction': datasets.Value('string')
}),
'error_label': datasets.Value("string"),
'education_level': datasets.Value("string"),
'l1': datasets.Value("string"),
'data_source': datasets.Value("string")
})
})
elif self.config.name == "sweana":
features = datasets.Features({
"pair1_element1": datasets.Value("string"),
"pair1_element2": datasets.Value("string"),
"pair2_element1": datasets.Value("string"),
"label": datasets.Value("string"),
"category": datasets.Value("string"),
})
elif self.config.name == 'swediagnostics':
features = datasets.Features({
'premise': datasets.Value("string"),
'hypothesis': datasets.Value("string"),
'label': datasets.ClassLabel(num_classes=3, names=['entailment', 'contradiction', 'neutral']),
'meta': datasets.Features({
'lexical_semantics': datasets.Value("string"),
'predicate_argument_structure': datasets.Value("string"),
'logic': datasets.Value("string"),
'knowledge': datasets.Value("string"),
'domain': datasets.Value("string")
})
})
elif self.config.name == 'swedn':
features = datasets.Features({
"id": datasets.Value("string"),
"headline": datasets.Value("string"),
"summary": datasets.Value("string"),
"article": datasets.Value("string"),
"article_category": datasets.Value("string")
})
elif self.config.name == "swefaq":
features = datasets.Features({
"category_id": datasets.Value("string"),
"candidate_answers": datasets.Sequence(datasets.Value("string")),
"question": datasets.Value("string"),
"label": datasets.Value(dtype='int32'),
"meta": datasets.Features({
"category": datasets.Value("string"),
"source": datasets.Value("string"),
"link": datasets.Value("string"),
})
})
elif self.config.name == 'swenli':
features = datasets.Features({
"id": datasets.Value("string"),
"premise": datasets.Value("string"),
"hypothesis": datasets.Value("string"),
"label": datasets.ClassLabel(num_classes=3, names=['entailment', 'contradiction', 'neutral'])
})
elif self.config.name == "swepar":
features = datasets.Features({
"genre": datasets.Value("string"),
"file": datasets.Value("string"),
"sentence_1": datasets.Value("string"),
"sentence_2": datasets.Value("string"),
"label": datasets.Value(dtype='float32'),
})
elif self.config.name == "swesat":
features = datasets.Features({
"id": datasets.Value("string"),
"item": datasets.Value("string"),
"candidate_answers": datasets.Sequence(
datasets.Value("string"),
length=5
),
"label": datasets.ClassLabel(5),
"meta": datasets.Features({
"comment": datasets.Value("string")
})
})
elif self.config.name == "swesim_relatedness":
features = datasets.Features({
"word_1": datasets.Value("string"),
"word_2": datasets.Value("string"),
"label": datasets.Value(dtype='float32')
})
elif self.config.name == "swesim_similarity":
features = datasets.Features({
"word_1": datasets.Value("string"),
"word_2": datasets.Value("string"),
"label": datasets.Value(dtype='float32')
})
elif self.config.name == "swewic":
features = datasets.Features({
"idx": datasets.Value(dtype='int32'),
"first": datasets.Features({
"context": datasets.Value("string"),
"word": datasets.Features({
"location": datasets.Features({
"start": datasets.Value(dtype='int32'),
"stop": datasets.Value(dtype='int32')
}),
"text": datasets.Value("string")
})
}),
"second": datasets.Features({
"context": datasets.Value("string"),
"word": datasets.Features({
"location": datasets.Features({
"start": datasets.Value(dtype='int32'),
"stop": datasets.Value(dtype='int32')
}),
"text": datasets.Value("string")
})
}),
"label": datasets.ClassLabel(num_classes=2, names=['same_sense', 'different_sense']),
"meta": datasets.Features({
"first_source": datasets.Value("string"),
"first_sense_id": datasets.Value("string"),
"second_source": datasets.Value("string"),
"second_sense_id": datasets.Value("string"),
"pos": datasets.Value("string")
})
})
elif self.config.name == 'swewinogender':
features = datasets.Features({
"idx": datasets.Value(dtype='int32'),
'premise': datasets.Value("string"),
'hypothesis': datasets.Value("string"),
'label': datasets.ClassLabel(num_classes=3, names=['entailment', 'contradiction', 'neutral']),
'meta': datasets.Features({
'tuple_id': datasets.Value("string"),
'template_id': datasets.Value("string"),
'occupation_participant': datasets.Value("string"),
'other_participant': datasets.Value("string"),
'pronoun': datasets.Value("string")
})
})
elif self.config.name == 'swewinograd':
features = datasets.Features({
"idx": datasets.Value(dtype='int32'),
'text': datasets.Value("string"),
'label': datasets.ClassLabel(num_classes=2, names=['not_coreferring', 'coreferring']),
'pronoun': datasets.Features({
'text': datasets.Value("string"),
'location': datasets.Features({
"start": datasets.Value(dtype='int32'),
"stop": datasets.Value(dtype='int32')
})
}),
'candidate_antecedent': datasets.Features({
"text": datasets.Value("string"),
'location': datasets.Features({
"start": datasets.Value(dtype='int32'),
"stop": datasets.Value(dtype='int32')
})
}),
'meta': datasets.Features({
'snippet_id': datasets.Value("string")
})
})
else:
raise ValueError(f"Subset {self.config.name} does not exist.")
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
file_format = 'jsonl'
splits = []
DATA_FOLDER = 'supersim-superlim' if self.config.name.startswith('swesim') else _TASKS[self.config.name]
data_dir_test = dl_manager.download_and_extract(os.path.join(_URL,DATA_FOLDER,f"{_TASKS[self.config.name]}_test.{file_format}"))
split_test = datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": data_dir_test,
"split": "test"
},
)
splits.append(split_test)
if self.config.name in ("absabank-imm", "argumentation_sent", "dalaj-ged", "swefaq",
"swewic", "swenli", "swedn", "swepar", "swewinograd"):
data_dir_dev = dl_manager.download_and_extract(os.path.join(_URL,DATA_FOLDER,f"{_TASKS[self.config.name]}_dev.{file_format}"))
split_dev = datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": data_dir_dev,
"split": "dev",
},
)
splits.append(split_dev)
if self.config.name in ("absabank-imm", "argumentation_sent", "dalaj-ged", "swefaq",
"swewic", "swenli", "swedn", "swepar", "swesim_relatedness",
"swesim_similarity", "swesat", "sweana", "swewinograd"):
data_dir_train = dl_manager.download_and_extract(os.path.join(_URL,DATA_FOLDER,f"{_TASKS[self.config.name]}_train.{file_format}"))
split_train = datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": data_dir_train,
"split": "train",
},
)
splits.append(split_train)
return splits
def _generate_examples(self, filepath, split):
# TODO: This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
df = pd.read_json(filepath, lines=True)
for key, row in df.iterrows():
if self.config.name == "absabank-imm":
yield key, {
"id": row['id'],
"text": row["text"],
"label": row["label"],
}
elif self.config.name == "argumentation_sent":
yield key, {
"sentence_id": row["sentence_id"],
"topic": row["topic"],
"label": row["label"],
"sentence" : row["sentence"],
}
elif self.config.name == "dalaj-ged":
# Yields examples as (key, example) tuples
meta = row['meta']
# Add None values when error span and confusion_pair values are missing.
if not meta['error_span'] and not meta['confusion_pair']:
meta['error_span']['start'] = None
meta['error_span']['stop'] = None
meta['confusion_pair']['incorrect_span'] = None
meta['confusion_pair']['correction'] = None
yield key, {
"sentence": row["sentence"],
"label": row["label"],
"meta": meta,
}
elif self.config.name == "sweana":
yield key, {
"pair1_element1": row["pair1_element1"],
"pair1_element2": row["pair1_element2"],
"pair2_element1": row["pair2_element1"],
"label": row["label"],
"category": row["category"],
}
elif self.config.name == "swediagnostics":
yield key, {
'premise': row['premise'],
'hypothesis': row['hypothesis'],
'label': row['label'],
'meta': row['meta'],
}
elif self.config.name == "swedn":
yield key, {
'id': row['id'],
'headline': row['headline'],
'summary': row['summary'],
'article': row['article'],
'article_category': row['article_category']
}
elif self.config.name == "swefaq":
yield key, {
"category_id": row['category_id'],
"question": row["question"],
"candidate_answers": row['candidate_answers'],
"label": row["label"],
"meta": row['meta'],
}
elif self.config.name == "swenli":
yield key, {
'id': row['id'],
'premise': row['premise'],
'hypothesis': row['hypothesis'],
'label': row['label']
}
elif self.config.name == "swepar":
yield key, {
"genre": row["genre"],
"file": row["file"],
"sentence_1": row["sentence_1"],
"sentence_2": row["sentence_2"],
"label": row["label"],
}
elif self.config.name == "swesat":
yield key, {
"id": row["id"],
"item": row["item"],
"candidate_answers": row["candidate_answers"],
"label": row["label"],
"meta": row["meta"],
}
elif self.config.name == "swesim_relatedness":
yield key, {
"word_1": row["word_1"],
"word_2": row["word_2"],
"label": row["label"],
}
elif self.config.name == "swesim_similarity":
yield key, {
"word_1": row["word_1"],
"word_2": row["word_2"],
"label": row["label"],
}
elif self.config.name == "swewic":
yield key, {
"idx": row["idx"],
"first": row["first"],
"second": row["second"],
"label": row["label"],
"meta": row["meta"],
}
elif self.config.name == "swewinogender":
yield key, {
"idx": row["idx"],
"premise": row["premise"],
"hypothesis": row["hypothesis"],
"label": row["label"],
"meta": row["meta"],
}
elif self.config.name == "swewinograd":
yield key, {
"idx": row["idx"],
"text": row["text"],
"label": row["label"],
"pronoun": row["pronoun"],
"candidate_antecedent": row["candidate_antecedent"],
"meta": row["meta"]
}
else:
raise ValueError(f"Subset {self.config.name} does not exist") |