Sagnik Ray Choudhury commited on
Commit
7c3694c
·
1 Parent(s): fa68a2d

chore: added files

Browse files
Files changed (5) hide show
  1. .gitattributes +3 -0
  2. README.md +131 -0
  3. dev.jsonl +3 -0
  4. test.jsonl +3 -0
  5. train.jsonl +3 -0
.gitattributes CHANGED
@@ -52,3 +52,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
52
  *.jpg filter=lfs diff=lfs merge=lfs -text
53
  *.jpeg filter=lfs diff=lfs merge=lfs -text
54
  *.webp filter=lfs diff=lfs merge=lfs -text
 
 
 
 
52
  *.jpg filter=lfs diff=lfs merge=lfs -text
53
  *.jpeg filter=lfs diff=lfs merge=lfs -text
54
  *.webp filter=lfs diff=lfs merge=lfs -text
55
+ dev.jsonl filter=lfs diff=lfs merge=lfs -text
56
+ test.jsonl filter=lfs diff=lfs merge=lfs -text
57
+ train.jsonl filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,131 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - crowdsourced
4
+ language_creators:
5
+ - crowdsourced
6
+ language:
7
+ - en
8
+ license:
9
+ - cc-by-4.0
10
+ multilinguality:
11
+ - monolingual
12
+ size_categories:
13
+ - 100K<n<1M
14
+ source_datasets:
15
+ - extended|snli
16
+ task_categories:
17
+ - text-classification
18
+ task_ids:
19
+ - natural-language-inference
20
+ - multi-input-text-classification
21
+ pretty_name: Counterfactual Instances for Stanford Natural Language Inference
22
+ dataset_info:
23
+ features:
24
+ - name: premise
25
+ dtype: string
26
+ - name: hypothesis
27
+ dtype: string
28
+ - name: label
29
+ dtype: string
30
+ splits:
31
+ - name: test
32
+ num_bytes: 1263912
33
+ num_examples: 10000
34
+ - name: train
35
+ num_bytes: 66159510
36
+ num_examples: 550152
37
+ - name: validation
38
+ num_bytes: 1268044
39
+ num_examples: 10000
40
+ download_size: 94550081
41
+ dataset_size: 68691466
42
+ ---
43
+ # Dataset Card for SNLI
44
+
45
+ ## Table of Contents
46
+ - [Dataset Description](#dataset-description)
47
+ - [Dataset Summary](#dataset-summary)
48
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
49
+ - [Languages](#languages)
50
+ - [Dataset Structure](#dataset-structure)
51
+ - [Data Instances](#data-instances)
52
+ - [Data Fields](#data-fields)
53
+ - [Data Splits](#data-splits)
54
+
55
+ ## Dataset Description
56
+
57
+ - **Repository:** [Learning the Difference that Makes a Difference with Counterfactually-Augmented Data](https://github.com/acmi-lab/counterfactually-augmented-data)
58
+ - **Paper:** [Learning the Difference that Makes a Difference with Counterfactually-Augmented Data](https://openreview.net/forum?id=Sklgs0NFvr)
59
+ - **Point of Contact:** [Sagnik Ray Choudhury](mailto:[email protected])
60
+
61
+ ### Dataset Summary
62
+
63
+ The SNLI corpus (version 1.0) is a collection of 570k human-written English sentence pairs manually labeled for balanced classification with the labels entailment, contradiction, and neutral, supporting the task of natural language inference (NLI), also known as recognizing textual entailment (RTE). In the paper [Learning the Difference that Makes a Difference with Counterfactually-Augmented Data](https://openreview.net/forum?id=Sklgs0NFvr), Kaushik et. al. provided a dataset with counterfactual perturbations on the SNLI and IMDB data. This repository contains the original and counterfactual perturbations for the SNLI data, which was generated after processing the original data from [here](https://github.com/acmi-lab/counterfactually-augmented-data).
64
+
65
+ ### Languages
66
+
67
+ The language in the dataset is English as spoken by users of the website Flickr and as spoken by crowdworkers from Amazon Mechanical Turk. The BCP-47 code for English is en.
68
+
69
+ ## Dataset Structure
70
+
71
+ ### Data Instances
72
+
73
+ For each instance, there is:
74
+ - a string for the premise,
75
+ - a string for the hypothesis,
76
+ - a label: (entailment, contradiction, neutral)
77
+ - a _type: this tells whether the data point is the original SNLI data point or a counterfactual perturbation.
78
+ - an id. The ids correspond to the original id in the SNLI data. For example, if the original SNLI instance was `4626192243.jpg#3r1e`, there wil be 5 data points as follows:
79
+
80
+ ```json lines
81
+ {
82
+ "id": "4626192243.jpg#3r1e-orig",
83
+ "premise": "A man with a beard is talking on the cellphone and standing next to someone who is lying down on the street.",
84
+ "hypothesis": "A man is prone on the street while another man stands next to him.",
85
+ "label": "entailment",
86
+ "_type": "original"
87
+ }
88
+ {
89
+ "id": "4626192243.jpg#3r1e-cf-0",
90
+ "premise": "A man with a beard is talking on the cellphone and standing next to someone who is lying down on the street.",
91
+ "hypothesis": "A man is talking to his wife on the cellphone.",
92
+ "label": "neutral",
93
+ "_type": "cf"
94
+ }
95
+ {
96
+ "id": "4626192243.jpg#3r1e-cf-1",
97
+ "premise": "A man with a beard is talking on the cellphone and standing next to someone who is on the street.",
98
+ "hypothesis": "A man is prone on the street while another man stands next to him.",
99
+ "label": "neutral",
100
+ "_type": "cf"
101
+ }
102
+ {
103
+ "id": "4626192243.jpg#3r1e-cf-2",
104
+ "premise": "A man with a beard is talking on the cellphone and standing next to someone who is sitting on the street.",
105
+ "hypothesis": "A man is prone on the street while another man stands next to him.",
106
+ "label": "contradiction",
107
+ "_type": "cf"
108
+ }
109
+ {
110
+ "id": "4626192243.jpg#3r1e-cf-3",
111
+ "premise": "A man with a beard is talking on the cellphone and standing next to someone who is lying down on the street.",
112
+ "hypothesis": "A man is alone on the street.",
113
+ "label": "contradiction",
114
+ "_type": "cf"
115
+ }
116
+ ```
117
+
118
+ ### Data Splits
119
+
120
+ Following SNLI, this dataset also has 3 splits: _train_, _dev_, and _test_. The original paper says this:
121
+ ```aidl
122
+ RP and RH, each comprised of 3332 pairs in train, 400 in validation, and 800 in test, leading to a total of 6664 pairs in train, 800 in validation, and 1600 in test in the revised dataset.
123
+ ```
124
+ This means for _train_, there are 1666 original SNLI instances, and each has 4 counterfactual perturbations (from premise and hypothesis edit), leading to a total of 1666*5 = 8330 _train_ data points in this dataset. Similarly, _dev_ and _test_ has 200 and 400 original SNLI instances respectively, consequently 1000 and 2000 instances in total.
125
+
126
+ | Dataset Split | Number of Instances in Split |
127
+ |---------------|------------------------------|
128
+ | Train | 8,330 |
129
+ | Dev | 1,000 |
130
+ | Test | 2,000 |
131
+
dev.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3d40548635b0d03191dca6329a7944c0b9539f0c8030b1b721154556ec2cf3fe
3
+ size 217479
test.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9ba68ec2d85b7c5e6cd6eea54b4e8f9cb4905b53294eec8791fd7ed6240b62e4
3
+ size 437468
train.jsonl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf6d2012db47a8b9b9199b875420f0aa98f84fd551c9fb36a1be6933a792c7ec
3
+ size 1771712