Sagnik Ray Choudhury commited on
Commit
6cfc7e9
·
1 Parent(s): f6dcdb5

chore: fix yml

Browse files
Files changed (1) hide show
  1. README.md +30 -32
README.md CHANGED
@@ -1,25 +1,25 @@
1
  ---
2
  annotations_creators:
3
- - crowdsourced
4
- language_creators:
5
- - crowdsourced
6
- language:
7
- - en
8
- license:
9
- - cc-by-4.0
10
- multilinguality:
11
- - monolingual
12
- size_categories:
13
- - 100K<n<1M
14
- source_datasets:
15
- - extended|snli
16
- task_categories:
17
- - text-classification
18
- task_ids:
19
- - natural-language-inference
20
- - multi-input-text-classification
21
- pretty_name: Counterfactual Instances for Stanford Natural Language Inference
22
- dataset_info:
23
  features:
24
  - name: premise
25
  dtype: string
@@ -28,19 +28,17 @@ annotations_creators:
28
  - name: label
29
  dtype: string
30
  splits:
31
- - name: test
32
- num_bytes: 1263912
33
- num_examples: 10000
34
  - name: train
35
- num_bytes: 66159510
36
- num_examples: 550152
37
- - name: validation
38
- num_bytes: 1268044
39
- num_examples: 10000
40
- download_size: 94550081
41
- dataset_size: 68691466
 
42
  ---
43
- # Dataset Card for SNLI
44
 
45
  ## Table of Contents
46
  - [Dataset Description](#dataset-description)
@@ -60,7 +58,7 @@ annotations_creators:
60
 
61
  ### Dataset Summary
62
 
63
- The SNLI corpus (version 1.0) is a collection of 570k human-written English sentence pairs manually labeled for balanced classification with the labels entailment, contradiction, and neutral, supporting the task of natural language inference (NLI), also known as recognizing textual entailment (RTE). In the paper [Learning the Difference that Makes a Difference with Counterfactually-Augmented Data](https://openreview.net/forum?id=Sklgs0NFvr), Kaushik et. al. provided a dataset with counterfactual perturbations on the SNLI and IMDB data. This repository contains the original and counterfactual perturbations for the SNLI data, which was generated after processing the original data from [here](https://github.com/acmi-lab/counterfactually-augmented-data).
64
 
65
  ### Languages
66
 
 
1
  ---
2
  annotations_creators:
3
+ - crowdsourced
4
+ language_creators:
5
+ - crowdsourced
6
+ language:
7
+ - en
8
+ license:
9
+ - cc-by-4.0
10
+ multilinguality:
11
+ - monolingual
12
+ size_categories:
13
+ - 1K<n<10K
14
+ source_datasets:
15
+ - extended|snli
16
+ task_categories:
17
+ - text-classification
18
+ task_ids:
19
+ - natural-language-inference
20
+ - multi-input-text-classification
21
+ pretty_name: Counterfactual Instances for Stanford Natural Language Inference
22
+ dataset_info:
23
  features:
24
  - name: premise
25
  dtype: string
 
28
  - name: label
29
  dtype: string
30
  splits:
 
 
 
31
  - name: train
32
+ num_bytes: 1771712
33
+ num_examples: 8300
34
+ - name: dev
35
+ num_bytes: 217479
36
+ num_examples: 1000
37
+ - name: test
38
+ num_bytes: 437468
39
+ num_examples: 2000
40
  ---
41
+ # Dataset Card for Counterfactually Augmented SNLI
42
 
43
  ## Table of Contents
44
  - [Dataset Description](#dataset-description)
 
58
 
59
  ### Dataset Summary
60
 
61
+ The SNLI corpus (version 1.0) is a collection of 570k human-written English sentence pairs manually labeled for balanced classification with the labels entailment, contradiction, and neutral, supporting the task of natural language inference (NLI), also known as recognizing textual entailment (RTE). In the ICLR 2020 paper [Learning the Difference that Makes a Difference with Counterfactually-Augmented Data](https://openreview.net/forum?id=Sklgs0NFvr), Kaushik et. al. provided a dataset with counterfactual perturbations on the SNLI and IMDB data. This repository contains the original and counterfactual perturbations for the SNLI data, which was generated after processing the original data from [here](https://github.com/acmi-lab/counterfactually-augmented-data).
62
 
63
  ### Languages
64