"""PorSimplesSent dataset""" import datasets import pandas as pd _CITATION = """ """ _DESCRIPTION = """ """ _URLS = { "nat_str": "https://raw.githubusercontent.com/sidleal/porsimplessent/c0b7bb6ccda6b40ebd7f5524b08a5699b2266ffe/pss/pss2_align_length_nat_str.tsv", "ori_nat": "https://raw.githubusercontent.com/sidleal/porsimplessent/c0b7bb6ccda6b40ebd7f5524b08a5699b2266ffe/pss/pss2_align_length_ori_nat.tsv", "ori_str": "https://raw.githubusercontent.com/sidleal/porsimplessent/c0b7bb6ccda6b40ebd7f5524b08a5699b2266ffe/pss/pss2_align_length_ori_str.tsv" } class PorSimplesSent(datasets.GeneratorBasedBuilder): VERSION = datasets.Version("1.0.0") def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { "sentence1": datasets.Value("string"), "sentence2": datasets.Value("string"), "label": datasets.Value("int32"), "production_id": datasets.Value("int32"), "level": datasets.Value("string"), "changed": datasets.Value("string"), "split": datasets.Value("string"), "sentence_text_from": datasets.Value("string"), "sentence_text_to": datasets.Value("string"), }), supervised_keys=None, homepage="", citation=_CITATION, ) def _split_generators(self, dl_manager): downloaded_files = dl_manager.download(_URLS) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "nat_str": downloaded_files["nat_str"], "ori_nat": downloaded_files["ori_nat"], "ori_str": downloaded_files["ori_str"], "split": "train" } ), datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "nat_str": downloaded_files["nat_str"], "ori_nat": downloaded_files["ori_nat"], "ori_str": downloaded_files["ori_str"], "split": "validation" } ), datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={ "nat_str": downloaded_files["nat_str"], "ori_nat": downloaded_files["ori_nat"], "ori_str": downloaded_files["ori_str"], "split": "test" } ) ] def _generate_examples(self, nat_str, ori_nat, ori_str, split): df1 = pd.read_csv(nat_str, sep="\t", on_bad_lines="skip") df2 = pd.read_csv(ori_nat, sep="\t", on_bad_lines="skip") df3 = pd.read_csv(ori_str, sep="\t", on_bad_lines="skip") df = pd.concat([df1, df2, df3], axis=0) df["mod"] = df["production_id"].apply(lambda x: x % 5) if split == "validation": df = df[df["mod"] == 1] elif split == "test": df = df[df["mod"] == 2] elif split == "train": df = df[df["mod"] != 1] df = df[df["mod"] != 2] df = df.sort_values(by=["production_id", "sentence_text_from", "sentence_text_to"]) prod_id_set = sorted(list(set(df["production_id"].values.tolist()))) records = df.to_dict("records") for idx, item in enumerate(records): row = {} for key in ["production_id", "level", "changed", "split", "sentence_text_from", "sentence_text_to"]: row[key] = item[key] if item["changed"] == "S": if prod_id_set.index(item["production_id"]) % 2 == 0: row["sentence1"] = item["sentence_text_from"] row["sentence2"] = item["sentence_text_to"] row["label"] = 2 else: row["sentence1"] = item["sentence_text_to"] row["sentence2"] = item["sentence_text_from"] row["label"] = 0 else: row["sentence1"] = item["sentence_text_from"] row["sentence2"] = item["sentence_text_to"] row["label"] = 1 yield idx, row