|
"""PorSimplesSent dataset""" |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
_CITATION = """ |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
""" |
|
_URLS = { |
|
"nat_str": "https://raw.githubusercontent.com/sidleal/porsimplessent/c0b7bb6ccda6b40ebd7f5524b08a5699b2266ffe/pss/pss2_align_length_nat_str.tsv", |
|
"ori_nat": "https://raw.githubusercontent.com/sidleal/porsimplessent/c0b7bb6ccda6b40ebd7f5524b08a5699b2266ffe/pss/pss2_align_length_ori_nat.tsv", |
|
"ori_str": "https://raw.githubusercontent.com/sidleal/porsimplessent/c0b7bb6ccda6b40ebd7f5524b08a5699b2266ffe/pss/pss2_align_length_ori_str.tsv" |
|
} |
|
|
|
class PorSimplesSent(datasets.GeneratorBasedBuilder): |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"sentence1": datasets.Value("string"), |
|
"sentence2": datasets.Value("string"), |
|
"label": datasets.Value("int32"), |
|
"production_id": datasets.Value("int32"), |
|
"level": datasets.Value("string"), |
|
"changed": datasets.Value("string"), |
|
"split": datasets.Value("string"), |
|
"sentence_text_from": datasets.Value("string"), |
|
"sentence_text_to": datasets.Value("string"), |
|
}), |
|
supervised_keys=None, |
|
homepage="", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
downloaded_files = dl_manager.download(_URLS) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"nat_str": downloaded_files["nat_str"], |
|
"ori_nat": downloaded_files["ori_nat"], |
|
"ori_str": downloaded_files["ori_str"], |
|
"split": "train" |
|
} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"nat_str": downloaded_files["nat_str"], |
|
"ori_nat": downloaded_files["ori_nat"], |
|
"ori_str": downloaded_files["ori_str"], |
|
"split": "validation" |
|
} |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"nat_str": downloaded_files["nat_str"], |
|
"ori_nat": downloaded_files["ori_nat"], |
|
"ori_str": downloaded_files["ori_str"], |
|
"split": "test" |
|
} |
|
) |
|
] |
|
|
|
def _generate_examples(self, nat_str, ori_nat, ori_str, split): |
|
df1 = pd.read_csv(nat_str, sep="\t", on_bad_lines="skip") |
|
df2 = pd.read_csv(ori_nat, sep="\t", on_bad_lines="skip") |
|
df3 = pd.read_csv(ori_str, sep="\t", on_bad_lines="skip") |
|
df = pd.concat([df1, df2, df3], axis=0) |
|
df["mod"] = df["production_id"].apply(lambda x: x % 5) |
|
if split == "validation": |
|
df = df[df["mod"] == 1] |
|
elif split == "test": |
|
df = df[df["mod"] == 2] |
|
elif split == "train": |
|
df = df[df["mod"] != 1] |
|
df = df[df["mod"] != 2] |
|
|
|
df = df.sort_values(by=["production_id", "sentence_text_from", "sentence_text_to"]) |
|
|
|
prod_id_set = sorted(list(set(df["production_id"].values.tolist()))) |
|
|
|
records = df.to_dict("records") |
|
for idx, item in enumerate(records): |
|
row = {} |
|
for key in ["production_id", "level", "changed", "split", "sentence_text_from", "sentence_text_to"]: |
|
row[key] = item[key] |
|
if item["changed"] == "S": |
|
if prod_id_set.index(item["production_id"]) % 2 == 0: |
|
row["sentence1"] = item["sentence_text_from"] |
|
row["sentence2"] = item["sentence_text_to"] |
|
row["label"] = 2 |
|
else: |
|
row["sentence1"] = item["sentence_text_to"] |
|
row["sentence2"] = item["sentence_text_from"] |
|
row["label"] = 0 |
|
else: |
|
row["sentence1"] = item["sentence_text_from"] |
|
row["sentence2"] = item["sentence_text_to"] |
|
row["label"] = 1 |
|
|
|
yield idx, row |