Update imo_proofs/imo_1985_p6.lean
Browse files- imo_proofs/imo_1985_p6.lean +39 -1
imo_proofs/imo_1985_p6.lean
CHANGED
@@ -1107,7 +1107,7 @@ lemma aux_unique
|
|
1107 |
|
1108 |
|
1109 |
|
1110 |
-
theorem
|
1111 |
(f : ℕ → NNReal → ℝ)
|
1112 |
(h₀ : ∀ x, f 1 x = x)
|
1113 |
(h₁ : ∀ n x, 0 < n → f (n + 1) x = f n x * (f n x + 1 / n)) :
|
@@ -1316,3 +1316,41 @@ theorem imo_1985_p6
|
|
1316 |
. exact aux_exists f h₂ hmo₀ f₀ hf₁ sn (by rfl) fb fc hfb₁ hfc₁ hfb₃ hfc₃ sb sc hsb₀ hsc₀ fr (by rfl) sbr scr (by rfl) (by rfl) br cr h₈ hbr₁ hu₅ hbr₃ hcr₃
|
1317 |
. intros x y hx₀ hy₀
|
1318 |
exact aux_unique f h₁ hmo₀ h₇ x y hx₀ hy₀
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1107 |
|
1108 |
|
1109 |
|
1110 |
+
theorem imo_1985_p6_nnreal
|
1111 |
(f : ℕ → NNReal → ℝ)
|
1112 |
(h₀ : ∀ x, f 1 x = x)
|
1113 |
(h₁ : ∀ n x, 0 < n → f (n + 1) x = f n x * (f n x + 1 / n)) :
|
|
|
1316 |
. exact aux_exists f h₂ hmo₀ f₀ hf₁ sn (by rfl) fb fc hfb₁ hfc₁ hfb₃ hfc₃ sb sc hsb₀ hsc₀ fr (by rfl) sbr scr (by rfl) (by rfl) br cr h₈ hbr₁ hu₅ hbr₃ hcr₃
|
1317 |
. intros x y hx₀ hy₀
|
1318 |
exact aux_unique f h₁ hmo₀ h₇ x y hx₀ hy₀
|
1319 |
+
|
1320 |
+
|
1321 |
+
theorem imo_1985_p6
|
1322 |
+
(f : ℕ → ℝ → ℝ)
|
1323 |
+
(h₀ : ∀ x, f 1 x = x)
|
1324 |
+
(h₁ : ∀ n x, 0 < n → f (n + 1) x = f n x * (f n x + 1 / n)) :
|
1325 |
+
∃! a, ∀ n, 0 < n → 0 < f n a ∧ f n a < f (n + 1) a ∧ f (n + 1) a < 1 := by
|
1326 |
+
let fn : ℕ → NNReal → ℝ := fun n x => f n x
|
1327 |
+
have hfn₁: ∀ n x, 0 < n → 0 ≤ x → fn n x = f n x := by
|
1328 |
+
exact fun n x a a ↦ rfl
|
1329 |
+
have h₂: ∃! a, ∀ (n : ℕ), 0 < n → 0 < fn n a ∧ fn n a < fn (n + 1) a ∧ fn (n + 1) a < 1 := by
|
1330 |
+
exact imo_1985_p6_nnreal fn (fun x ↦ h₀ ↑x) fun n x ↦ h₁ n ↑x
|
1331 |
+
obtain ⟨a, ha₀, ha₁⟩ := h₂
|
1332 |
+
use a
|
1333 |
+
constructor
|
1334 |
+
. intro n hn₀
|
1335 |
+
exact ha₀ n hn₀
|
1336 |
+
. intro y hy₀
|
1337 |
+
have hy₁: 0 ≤ y.toNNReal := by exact zero_le y.toNNReal
|
1338 |
+
by_cases hy₂: 0 ≤ y
|
1339 |
+
. refine (Real.toNNReal_eq_toNNReal_iff hy₂ ?_).mp ?_
|
1340 |
+
. exact NNReal.zero_le_coe
|
1341 |
+
. rw [@Real.toNNReal_coe]
|
1342 |
+
refine ha₁ (y.toNNReal) ?_
|
1343 |
+
intro n hn₀
|
1344 |
+
rw [hfn₁ n _ hn₀ hy₁, hfn₁ (n + 1) _ (by linarith) hy₁]
|
1345 |
+
rw [Real.coe_toNNReal y hy₂]
|
1346 |
+
exact hy₀ n hn₀
|
1347 |
+
. exfalso
|
1348 |
+
push_neg at hy₂
|
1349 |
+
have hy₃: f 1 y < 0 := by
|
1350 |
+
rw [h₀]
|
1351 |
+
exact hy₂
|
1352 |
+
have hy₄: 0 < f 1 y := by
|
1353 |
+
exact (hy₀ 1 (by decide)).1
|
1354 |
+
have hy₅: (0:ℝ) < 0 := by exact lt_trans hy₄ hy₃
|
1355 |
+
exact (lt_self_iff_false 0).mp hy₅
|
1356 |
+
|