roozbeh-yz commited on
Commit
d50785f
·
verified ·
1 Parent(s): 2a1d1cf

Update imo_proofs/imo_1985_p6.lean

Browse files
Files changed (1) hide show
  1. imo_proofs/imo_1985_p6.lean +39 -1
imo_proofs/imo_1985_p6.lean CHANGED
@@ -1107,7 +1107,7 @@ lemma aux_unique
1107
 
1108
 
1109
 
1110
- theorem imo_1985_p6
1111
  (f : ℕ → NNReal → ℝ)
1112
  (h₀ : ∀ x, f 1 x = x)
1113
  (h₁ : ∀ n x, 0 < n → f (n + 1) x = f n x * (f n x + 1 / n)) :
@@ -1316,3 +1316,41 @@ theorem imo_1985_p6
1316
  . exact aux_exists f h₂ hmo₀ f₀ hf₁ sn (by rfl) fb fc hfb₁ hfc₁ hfb₃ hfc₃ sb sc hsb₀ hsc₀ fr (by rfl) sbr scr (by rfl) (by rfl) br cr h₈ hbr₁ hu₅ hbr₃ hcr₃
1317
  . intros x y hx₀ hy₀
1318
  exact aux_unique f h₁ hmo₀ h₇ x y hx₀ hy₀
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1107
 
1108
 
1109
 
1110
+ theorem imo_1985_p6_nnreal
1111
  (f : ℕ → NNReal → ℝ)
1112
  (h₀ : ∀ x, f 1 x = x)
1113
  (h₁ : ∀ n x, 0 < n → f (n + 1) x = f n x * (f n x + 1 / n)) :
 
1316
  . exact aux_exists f h₂ hmo₀ f₀ hf₁ sn (by rfl) fb fc hfb₁ hfc₁ hfb₃ hfc₃ sb sc hsb₀ hsc₀ fr (by rfl) sbr scr (by rfl) (by rfl) br cr h₈ hbr₁ hu₅ hbr₃ hcr₃
1317
  . intros x y hx₀ hy₀
1318
  exact aux_unique f h₁ hmo₀ h₇ x y hx₀ hy₀
1319
+
1320
+
1321
+ theorem imo_1985_p6
1322
+ (f : ℕ → ℝ → ℝ)
1323
+ (h₀ : ∀ x, f 1 x = x)
1324
+ (h₁ : ∀ n x, 0 < n → f (n + 1) x = f n x * (f n x + 1 / n)) :
1325
+ ∃! a, ∀ n, 0 < n → 0 < f n a ∧ f n a < f (n + 1) a ∧ f (n + 1) a < 1 := by
1326
+ let fn : ℕ → NNReal → ℝ := fun n x => f n x
1327
+ have hfn₁: ∀ n x, 0 < n → 0 ≤ x → fn n x = f n x := by
1328
+ exact fun n x a a ↦ rfl
1329
+ have h₂: ∃! a, ∀ (n : ℕ), 0 < n → 0 < fn n a ∧ fn n a < fn (n + 1) a ∧ fn (n + 1) a < 1 := by
1330
+ exact imo_1985_p6_nnreal fn (fun x ↦ h₀ ↑x) fun n x ↦ h₁ n ↑x
1331
+ obtain ⟨a, ha₀, ha₁⟩ := h₂
1332
+ use a
1333
+ constructor
1334
+ . intro n hn₀
1335
+ exact ha₀ n hn₀
1336
+ . intro y hy₀
1337
+ have hy₁: 0 ≤ y.toNNReal := by exact zero_le y.toNNReal
1338
+ by_cases hy₂: 0 ≤ y
1339
+ . refine (Real.toNNReal_eq_toNNReal_iff hy₂ ?_).mp ?_
1340
+ . exact NNReal.zero_le_coe
1341
+ . rw [@Real.toNNReal_coe]
1342
+ refine ha₁ (y.toNNReal) ?_
1343
+ intro n hn₀
1344
+ rw [hfn₁ n _ hn₀ hy₁, hfn₁ (n + 1) _ (by linarith) hy₁]
1345
+ rw [Real.coe_toNNReal y hy₂]
1346
+ exact hy₀ n hn₀
1347
+ . exfalso
1348
+ push_neg at hy₂
1349
+ have hy₃: f 1 y < 0 := by
1350
+ rw [h₀]
1351
+ exact hy₂
1352
+ have hy₄: 0 < f 1 y := by
1353
+ exact (hy₀ 1 (by decide)).1
1354
+ have hy₅: (0:ℝ) < 0 := by exact lt_trans hy₄ hy₃
1355
+ exact (lt_self_iff_false 0).mp hy₅
1356
+