|
import Mathlib |
|
set_option linter.unusedVariables.analyzeTactics true |
|
|
|
open Nat |
|
|
|
|
|
lemma mylemma_1 |
|
(b p: β) |
|
(hβ: 0 < b) |
|
(hbp: b < p) : |
|
(1 + (b * p + b ^ p) β€ (1 + b) ^ p) := by |
|
refine Nat.le_induction ?_ ?_ p hbp |
|
. rw [add_pow 1 b b.succ] |
|
rw [Finset.sum_range_succ _ b.succ] |
|
simp |
|
rw [Finset.sum_range_succ _ b] |
|
simp |
|
rw [add_comm _ (b * (b + 1))] |
|
have gb: b = b - 1 + 1 := by exact (Nat.sub_eq_iff_eq_add hβ).mp rfl |
|
nth_rewrite 7 [gb] |
|
rw [Finset.sum_range_succ' _ (b-1)] |
|
simp |
|
omega |
|
. intros n _ hβ |
|
nth_rewrite 2 [pow_add] |
|
rw [pow_one] |
|
have hβ: (1 + (b * n + b ^ n)) * (1 + b) β€ ((1 + b) ^ n) * (1 + b) := by |
|
exact mul_le_mul_right' hβ (1 + b) |
|
have hβ: 1 + (b * (n + 1) + b ^ (n + 1)) β€ (1 + (b * n + b ^ n)) * (1 + b) := by |
|
ring_nf |
|
rw [Nat.add_assoc _ (b ^ 2 * n) (b ^ n)] |
|
exact Nat.le_add_right (1 + b + b * b ^ n + b * n) (b ^ 2 * n + b ^ n) |
|
exact le_trans hβ hβ |
|
|
|
|
|
lemma mylemma_2 |
|
(b: β) : |
|
(b.factorial β€ b ^ b) := by |
|
-- exact factorial_le_pow b |
|
-- lean 4 has the lemma factorial_le_pow |
|
induction' b with n hi |
|
. norm_num |
|
. by_cases hnp: 0 < n |
|
. rw [ factorial_succ, pow_add, pow_one, mul_comm ] |
|
refine mul_le_mul_right (n + 1) ?_ |
|
have hβ: n^ n β€ (n + 1)^n := by |
|
refine (Nat.pow_le_pow_iff_left ?_).mpr ?_ |
|
. linarith |
|
. linarith |
|
exact le_trans hi hβ |
|
. push_neg at hnp |
|
interval_cases n |
|
simp |
|
|
|
|
|
lemma mylemma_3 |
|
(a b p: β) |
|
(hp: Nat.Prime p) |
|
(hβ: a ^ p = b.factorial + p) |
|
(hbp: p β€ b) : |
|
(p β£ a) := by |
|
have hβ: p β£ b.factorial := by exact Nat.dvd_factorial (Nat.Prime.pos hp) hbp |
|
have hβ: p β£ b.factorial + p := by exact Nat.dvd_add_self_right.mpr hβ |
|
have hβ: p β£ a^p := by |
|
rw [hβ] |
|
exact hβ |
|
exact Nat.Prime.dvd_of_dvd_pow hp hβ |
|
|
|
|
|
lemma mylemma_42 |
|
(a b : β) |
|
(hβ: 2 β€ a) |
|
(hβ: a < b) : |
|
(a + b < a * b ) := by |
|
have hβ: a + b < b + b := by exact add_lt_add_right hβ b |
|
have hβ: b + b β€ a * b := by |
|
rw [β two_mul] |
|
exact mul_le_mul_right' hβ b |
|
exact gt_of_ge_of_gt hβ hβ |
|
|
|
|
|
lemma mylemma_43 |
|
(p: β) : |
|
(Finset.Ico p (2 * p - 1)).prod (fun x => x + 1) |
|
= (Finset.range (p - 1)).prod (fun x => p + (x + 1)) := by |
|
rw [Finset.prod_Ico_eq_prod_range _ (p) (2 * p - 1)] |
|
have hβ: 2 * p - 1 - p = p - 1 := by omega |
|
rw [hβ] |
|
exact rfl |
|
|
|
|
|
lemma mylemma_44 |
|
(p: β) |
|
(hp: 2 β€ p) : |
|
(Finset.range (p - 1)).prod (fun (x : β) => x + 1) |
|
= (Finset.range (p - 1)).prod (fun (x : β) => p - (x + 1)) := by |
|
refine Nat.le_induction ?_ ?_ p hp |
|
. norm_num |
|
. intros n hn2 hβ |
|
simp at * |
|
have hn: 0 < n := by exact lt_of_succ_lt hn2 |
|
rw [β Nat.mul_factorial_pred hn, hβ] |
|
let f: (β β β) := fun (x : β) => n - x |
|
have hβ: (Finset.range n).prod f = |
|
(Finset.range 1).prod f * (Finset.Ico 1 n).prod f := by |
|
exact (Finset.prod_range_mul_prod_Ico (fun k => n - k) hn).symm |
|
rw [hβ] |
|
have hβ: (Finset.range 1).prod f = n := by |
|
exact Finset.prod_range_one fun k => n - k |
|
rw [hβ] |
|
simp |
|
left |
|
rw [Finset.prod_Ico_eq_prod_range f 1 n] |
|
ring_nf |
|
exact rfl |
|
|
|
|
|
lemma mylemma_41 |
|
(b p: β) |
|
-- (hβ: 0 < b) |
|
(hp: Nat.Prime p) |
|
(hb2p: b < 2 * p) : |
|
b.factorial + p < p ^ (2 * p) := by |
|
have hβ: b.factorial β€ (2*p - 1).factorial := by |
|
refine factorial_le ?_ |
|
exact le_pred_of_lt hb2p |
|
have gp: 2 β€ p := by exact Prime.two_le hp |
|
have gp1: (p - 1) + 1 = p := by |
|
refine Nat.sub_add_cancel ?_ |
|
exact one_le_of_lt gp |
|
let f: (β β β) := (fun (x : β) => x + 1) |
|
have hβ: (Finset.range (2 * p - 1)).prod f = |
|
(Finset.range (p - 1)).prod (fun (x : β) => p^2 - (x+1)^2) * p := by |
|
-- break the prod into three segments rang(p-1) + p + (p+1) until 2p-1 |
|
have gβ: (Finset.range (2 * p - 1)).prod f = (Finset.range ((p - 1) + 1)).prod f |
|
* (Finset.Ico ((p - 1) + 1) (2 * p - 1)).prod f := by |
|
symm |
|
refine Finset.prod_range_mul_prod_Ico f ?_ |
|
rw [gp1] |
|
have ggβ: p + 2 - 1 β€ 2 * p - 1 := by |
|
refine Nat.sub_le_sub_right ?_ 1 |
|
rw [add_comm] |
|
exact add_le_mul (by norm_num) gp |
|
exact le_of_lt ggβ |
|
have gβ: (Finset.range ((p - 1) + 1)).prod (fun (x : β) => x + 1) = |
|
(Finset.range (p - 1)).prod (fun (x : β) => x + 1) * ((p - 1) + 1) := by |
|
exact Finset.prod_range_succ _ (p - 1) |
|
rw [gβ] at gβ |
|
nth_rewrite 2 [mul_comm] at gβ |
|
rw [β mul_assoc] at gβ |
|
rw [gp1] at gβ gβ |
|
have gβ: (Finset.Ico ((p - 1) + 1) (2 * p - 1)).prod (fun (x : β) => x + 1) |
|
= (Finset.range (p - 1)).prod (fun (x : β) => p + (x+1)) := by |
|
rw [gp1] |
|
exact mylemma_43 p |
|
have gβ: (Finset.range (p - 1)).prod (fun (x : β) => x + 1) |
|
= (Finset.range (p - 1)).prod (fun (x : β) => p - (x+1)) := by |
|
exact mylemma_44 p gp |
|
rw [gp1] at gβ |
|
rw [gβ,gβ] at gβ |
|
have gβ: (Finset.range (p - 1)).prod (fun (x : β) => p + (x+1)) |
|
* (Finset.range (p - 1)).prod (fun (x : β) => p - (x+1)) |
|
= (Finset.range (p - 1)).prod (fun (x : β) => (p + (x+1)) * (p - (x+1))) := by |
|
symm |
|
exact Finset.prod_mul_distrib |
|
have gβ
: (fun (x : β) => p ^ 2 - (x+1) ^ 2) = (fun (x : β) => (p + (x+1)) * (p - (x+1))) := by |
|
ext1 x |
|
exact Nat.sq_sub_sq p (x + 1) |
|
rw [gβ,β gβ
] at gβ |
|
exact gβ |
|
have hβ: (Finset.range (p - 1)).prod (fun (x : β) => p^2 - (x+1)^2) * p |
|
β€ (p^2)^(Finset.range (p - 1)).card * p := by |
|
refine Nat.mul_le_mul_right ?_ ?_ |
|
refine Finset.prod_le_pow_card (Finset.range (p - 1)) ?_ (p^2) ?_ |
|
intros x _ |
|
exact (p ^ 2).sub_le ((x + 1) ^ 2) |
|
simp at * |
|
have hβ: b.factorial + p β€ (p ^ 2) ^ (p - 1) * p + p := by |
|
refine add_le_add_right ?_ p |
|
refine le_trans ?_ hβ |
|
rw [β hβ] |
|
rw [Finset.prod_range_add_one_eq_factorial] |
|
exact hβ |
|
have hβ
: b.factorial + p < (p ^ 2) ^ (p - 1) * p * p := by |
|
refine lt_of_le_of_lt hβ ?_ |
|
rw [add_comm] |
|
nth_rewrite 2 [mul_comm] |
|
refine mylemma_42 p ((p ^ 2) ^ (p - 1) * p) gp ?_ |
|
refine lt_mul_left (by linarith) ?_ |
|
rw [β pow_mul] |
|
refine Nat.one_lt_pow ?_ (Nat.lt_of_succ_le gp) |
|
refine Nat.mul_ne_zero (by norm_num) ?_ |
|
exact Nat.sub_ne_zero_iff_lt.mpr gp |
|
rw [mul_assoc _ p p, β pow_two p] at hβ
|
|
rw [β Nat.pow_succ, succ_eq_add_one, gp1] at hβ
|
|
rw [Nat.pow_mul] |
|
exact hβ
|
|
|
|
|
|
lemma mylemma_4 |
|
(a b p: β) |
|
(hβ: 0 < a β§ 0 < b) |
|
(hp: Nat.Prime p) |
|
(hβ: a ^ p = b.factorial + p) |
|
(hbp: p β€ b) |
|
(hβ: p β£ a) |
|
(hb2p: b < 2 * p) : |
|
(a = p) := by |
|
have gp: p β€ a := by exact Nat.le_of_dvd hβ.1 hβ |
|
cases' lt_or_eq_of_le gp with hβ hβ |
|
. exfalso |
|
cases' hβ with c hβ |
|
have gc: 0 < c := by |
|
by_contra! hc0 |
|
interval_cases c |
|
simp at * |
|
linarith |
|
by_cases hc: c < p |
|
. have gβ: c β£ c^p := by exact dvd_pow_self c (by linarith) |
|
have hβ: c β£ a^p := by |
|
rw [hβ, mul_pow] |
|
exact dvd_mul_of_dvd_right gβ (p ^ p) |
|
have hβ
: c β£ b.factorial := by exact Nat.dvd_factorial gc (by linarith) |
|
have gβ: p = a ^ p - b.factorial := by |
|
symm |
|
rw [add_comm] at hβ |
|
refine (Nat.sub_eq_iff_eq_add ?_).mpr hβ |
|
rw [add_comm] at hβ |
|
exact le.intro (hβ.symm) |
|
have hβ: c β£ p := by |
|
rw [gβ] |
|
exact dvd_sub' hβ hβ
|
|
have hβ: c = 1 β¨ c = p := by exact (dvd_prime hp).mp hβ |
|
cases' hβ with hββ hββ |
|
. rw [hββ, mul_one] at hβ |
|
rw [hβ] at hβ |
|
linarith [hβ] |
|
. rw [hββ] at hc |
|
simp at hc |
|
. push_neg at hc |
|
have gβ: p^2 β€ a := by |
|
rw [hβ, pow_two] |
|
exact mul_le_mul_left' hc p |
|
have hβ: p^(2*p) β€ a^p := by |
|
rw [pow_mul] |
|
exact pow_left_mono p gβ |
|
have hβ: b.factorial + p < p^(2*p) := by exact mylemma_41 b p hp hb2p |
|
rw [βhβ] at hβ |
|
linarith |
|
exact hβ.symm |
|
|
|
|
|
lemma mylemma_53 |
|
(p: β) |
|
(hp5: 5 β€ p) : |
|
((βp:β€) ^ p β‘ βp * (βp + 1) * (-1) ^ (p - 1) + (-1) ^ p [ZMOD (βp + 1) ^ 2]) := by |
|
-- have hβ: βp ^ p = Finset.range -- binomial expansion |
|
-- take the first two elements out |
|
-- show that all the other elements are individually divisible by (p+1)^2 |
|
-- conclude that their sum is divisible by (p+1)^2 |
|
-- summation β‘ 0 [ZMOD (βp + 1) ^ 2] |
|
-- now show that Nat.modeq.add |
|
have hβ: (βp:β€) = (βp + 1) - 1 := by simp |
|
have hβ: βp ^ p β‘ ((βp + 1) - 1) ^ p [ZMOD (βp + 1) ^ 2] := by rw [β hβ] |
|
have hβ: (((βp:β€) + 1) - 1) ^ p = (βp * (βp + 1) * (-1:β€) ^ (p - 1) + (-1) ^ p) |
|
+ (Finset.Ico 2 (p + 1)).sum (fun (k : β) => |
|
(βp + 1) ^ k * (-1:β€) ^ (p - k) * β(p.choose k)) := by |
|
rw [sub_eq_add_neg] |
|
rw [add_pow ((βp:β€) + 1) (-1:β€)] |
|
have gβ: 2 β€ p + 1 := by |
|
have ggβ: 5 + 1 β€ p + 1 := by exact add_le_add_right hp5 1 |
|
refine le_trans ?_ ggβ |
|
norm_num |
|
have gβ: 1 β€ 2 := by norm_num |
|
rw [β Finset.sum_range_add_sum_Ico _ gβ] |
|
rw [β Finset.sum_range_add_sum_Ico _ gβ] |
|
simp |
|
rw [add_comm] |
|
simp |
|
rw [mul_comm] |
|
rw [mul_assoc] |
|
have hβ: 0 β‘ (Finset.Ico 2 (p + 1)).sum (fun (k : β) => (βp + 1) ^ k * (-1) ^ (p - k) * β(p.choose k)) |
|
[ZMOD (βp + 1) ^ 2] := by |
|
refine Int.modEq_of_dvd ?_ |
|
simp |
|
refine Finset.dvd_sum ?_ |
|
intros x gβ |
|
have gx: 2 β€ x := by exact (Finset.mem_Ico.mp gβ).left |
|
rw [mul_assoc] |
|
refine dvd_mul_of_dvd_left ?_ ((-1:β€) ^ (p - x) * β(p.choose x)) |
|
refine pow_dvd_pow ((βp:β€) + 1) gx |
|
rw [hβ] at hβ |
|
rw [β add_zero ((βp:β€) ^ p)] at hβ |
|
exact Int.ModEq.add_right_cancel hβ hβ |
|
|
|
|
|
lemma mylemma_52 |
|
(p: β) |
|
(hp: Nat.Prime p) |
|
(hp5: 5 β€ p) |
|
(hβ: (p + 1) ^ 2 β£ p ^ p - p) : |
|
False := by |
|
have hβ: ((βp^p - βp):β€) β‘ (β(p.choose 1) * β(p + 1) * (-1:β€)^(p-1) + (-1:β€)^p) - βp |
|
[ZMOD β(p+1)^2] := by |
|
refine Int.ModEq.sub_right (βp) ?_ |
|
simp |
|
exact mylemma_53 p hp5 |
|
have gpo: Odd p := by |
|
refine Nat.Prime.odd_of_ne_two hp ?_ |
|
linarith [hp5] |
|
have gpe: Even (p - 1) := by |
|
refine hp.even_sub_one ?_ |
|
linarith [hp5] |
|
have gβ: (-1:β€) ^ (p - 1) = 1 := by exact Even.neg_one_pow gpe |
|
have gβ: (-1:β€) ^ (p) = -1 := by exact Odd.neg_one_pow gpo |
|
rw [gβ,gβ] at hβ |
|
simp at hβ |
|
have hβ: (p ^ p - p) β‘ (p * (p + 1)) - 1 - p [MOD ((p + 1) ^ 2)] := by |
|
refine Int.natCast_modEq_iff.mp ?_ |
|
have gβ: p β€ p^p := by |
|
refine Nat.le_self_pow (by linarith) _ |
|
rw [Nat.cast_sub gβ] |
|
have gβ: p β€ p * (p + 1) - 1 := by |
|
rw [mul_add] |
|
simp |
|
rw [add_comm, Nat.add_sub_assoc] |
|
. simp |
|
. rw [β pow_two] |
|
refine Nat.one_le_pow 2 p (by linarith) |
|
rw [Nat.cast_sub gβ] |
|
have gβ
: 1 β€ p * (p + 1) := by |
|
rw [β mul_one (p * (p + 1))] |
|
refine Nat.le_mul_of_pos_left ?_ ?_ |
|
refine Nat.mul_pos (by linarith) (by linarith) |
|
rw [Nat.cast_sub gβ
] |
|
rw [β sub_eq_add_neg] at hβ |
|
norm_cast |
|
norm_cast at hβ |
|
have hβ: p * (p + 1) - 1 - p = p^2 - 1 := by |
|
rw [Nat.sub_sub, mul_add] |
|
simp |
|
rw [β pow_two] |
|
exact Nat.add_sub_add_right (p^2) p 1 |
|
rw [hβ] at hβ |
|
clear hβ gpo gpe gβ gβ |
|
-- now derive a line of contradictions from hβ |
|
have hcβ: (p ^ p - p) β‘ 0 [MOD (p+1)^2] := by exact modEq_zero_iff_dvd.mpr hβ |
|
-- mix the contradiction with what we had in hβ |
|
have hβ: p ^ 2 - 1 β‘ 0 [MOD (p+1)^2] := by |
|
apply Nat.ModEq.symm at hβ |
|
exact Nat.ModEq.trans hβ hcβ |
|
have hβ
: p - 1 β‘ 0 [MOD (p+1)] := by |
|
rw [pow_two] at hβ |
|
have gβ: p^2 - 1^2 = (p-1) * (p+1) := by |
|
rw [mul_comm] |
|
exact Nat.sq_sub_sq p 1 |
|
simp at gβ |
|
rw [gβ] at hβ |
|
have gβ: p + 1 β 0 := by linarith |
|
refine Nat.ModEq.mul_right_cancel' gβ ?_ |
|
rw [zero_mul] |
|
exact hβ |
|
have hβ: p - 1 β€ 0 := by |
|
refine Nat.ModEq.le_of_lt_add hβ
?_ |
|
simp |
|
rw [β succ_eq_add_one] |
|
refine Nat.sub_lt_succ p 1 |
|
have hβ: 0 < p - 1 := by |
|
simp |
|
linarith |
|
linarith [hβ,hβ] |
|
|
|
|
|
lemma mylemma_51 |
|
(p: β) |
|
(hpl: 5 β€ p) : |
|
(p + p.factorial < p ^ p) := by |
|
-- we use induction |
|
refine Nat.le_induction ?_ ?_ p (hpl) |
|
. exact Nat.lt_of_sub_eq_succ rfl |
|
. intros n hn hβ |
|
have hβ: n + 1 + (n + 1).factorial = (n.factorial + 1) * (n + 1) := by |
|
rw[add_mul, one_mul, Nat.factorial_succ] |
|
rw [add_comm (n + 1)] |
|
rw [mul_comm (n + 1)] |
|
rw [hβ, pow_add, pow_one ] |
|
refine Nat.mul_lt_mul_of_pos_right ?_ (by linarith) |
|
have hβ
: n ^ n < (n + 1) ^ n := by |
|
refine Nat.pow_lt_pow_left ?_ ?_ |
|
. exact lt_add_one n |
|
. refine Nat.ne_of_gt ?_ |
|
linarith |
|
linarith |
|
|
|
|
|
lemma mylemma_5 |
|
(b p: β) |
|
(hp: Nat.Prime p) |
|
(hbp: p β€ b) |
|
(hβ: p ^ p = b.factorial + p) |
|
(hp5: 5 β€ p) : |
|
(False) := by |
|
-- first prove that b = p cannot be |
|
by_cases hβ: b = p |
|
. have hβ
: p + p.factorial < p^p := by exact mylemma_51 p hp5 |
|
rw [hβ] at hβ |
|
linarith |
|
. have hpb: p < b := by exact lt_of_le_of_ne' hbp hβ |
|
clear hbp hβ |
|
have hβ: (p + 1) ^ 2 β£ b.factorial := by |
|
have gβ: p + 1 β€ b := by exact succ_le_iff.mpr hpb |
|
have gβ: 2 β£ (p + 1) := by |
|
have ggβ: Odd p := by |
|
refine hp.odd_of_ne_two ?_ |
|
linarith |
|
have ggβ: Even (p + 1) := by |
|
refine ggβ.add_odd ?_ |
|
norm_num |
|
exact even_iff_two_dvd.mp ggβ |
|
have gβ: 2 * ((p+1)/2) * (p + 1) β£ b.factorial := by |
|
have ggβ: (p + 1).factorial β£ b.factorial := by exact Nat.factorial_dvd_factorial gβ |
|
have ggβ: (p + 1).factorial = (p + 1) * p.factorial := by exact factorial_succ p |
|
rw [mul_comm] at ggβ |
|
have ggβ: 6/2 β€ (p + 1)/2 := by |
|
refine Nat.div_le_div_right ?_ |
|
linarith |
|
norm_num at ggβ |
|
have ggβ: 2 + (p+1)/2 β€ p := by -- strong induction |
|
refine Nat.le_induction ?_ ?_ p (hp5) |
|
. norm_num |
|
. intros n _ hβ |
|
ring_nf |
|
have gggβ: (n / 2).succ β€ (n + 1) / 2 + 1 := by |
|
rw [β succ_eq_add_one] |
|
refine Nat.succ_le_succ ?_ |
|
refine Nat.div_le_div_right ?_ |
|
linarith |
|
simp |
|
nth_rewrite 1 [β mul_one 2] |
|
rw [Nat.two_mul 1, add_assoc] |
|
refine Nat.add_le_add_left ?_ 1 |
|
refine le_trans ?_ hβ |
|
rw [add_comm 2 _] |
|
nth_rewrite 3 [β mul_one 2] |
|
rw [Nat.two_mul 1, β add_assoc, add_comm 1] |
|
exact Nat.add_le_add_right gggβ 1 |
|
have ggβ
: (2+(p+1)/2).factorial β£ p.factorial := by |
|
exact factorial_dvd_factorial ggβ |
|
have ggβ: (2:β).factorial * ((p+1)/2).factorial β£ p.factorial := by |
|
refine dvd_trans ?_ ggβ
|
|
exact (2:β).factorial_mul_factorial_dvd_factorial_add ((p + 1) / 2) |
|
have ggβ: 2 * ((p+1)/2) β£ p.factorial := by |
|
refine dvd_trans ?_ ggβ |
|
simp |
|
refine mul_dvd_mul_left 2 ?_ |
|
refine Nat.dvd_factorial (by linarith[ggβ]) (by linarith) |
|
have ggβ: 2 * ((p+1)/2) * (p + 1) β£ p.factorial * (p + 1) := by |
|
refine mul_dvd_mul_right ?_ (p + 1) |
|
exact ggβ |
|
rw [ggβ] at ggβ |
|
exact dvd_trans ggβ ggβ |
|
have gβ: 2 * ((p+1)/2) = (p + 1) := by |
|
exact Nat.mul_div_cancel' gβ |
|
rw [gβ] at gβ |
|
ring_nf at * |
|
exact gβ |
|
have hβ: b.factorial = p ^ p - p := by exact eq_tsub_of_add_eq (hβ.symm) |
|
rw [hβ] at hβ |
|
exact mylemma_52 p hp hp5 hβ |
|
|
|
|
|
lemma mylemma_6 |
|
(a b p: β) |
|
(hp: Nat.Prime p) |
|
(hβ: p β£ a) |
|
(hb2p: 2 * p β€ b) : |
|
(p ^ 2 β£ a ^ p - b.factorial) := by |
|
have gβ: p^p β£ a^p := by exact pow_dvd_pow_of_dvd hβ p |
|
have gβ: 2 β€ p := by exact Prime.two_le hp |
|
have hβ: p^2 β£ a^p := by exact pow_dvd_of_le_of_pow_dvd gβ gβ |
|
have gβ: (2*p).factorial β£ b.factorial := by exact factorial_dvd_factorial hb2p |
|
have gβ: p.factorial * p.factorial β£ (p+p).factorial := by |
|
exact factorial_mul_factorial_dvd_factorial_add p p |
|
rw [β pow_two, β two_mul] at gβ |
|
have gβ
: p β£ p.factorial := by exact Nat.dvd_factorial (by linarith) (by linarith) |
|
have hβ: p ^ 2 β£ p.factorial ^ 2 := by exact pow_dvd_pow_of_dvd gβ
2 |
|
have gβ: p ^ 2 β£ (2 * p).factorial := by exact dvd_trans hβ gβ |
|
have hβ
: p^2 β£ b.factorial := by exact dvd_trans gβ gβ |
|
exact dvd_sub' hβ hβ
|
|
|
|
|
|
theorem imo_2022_p5 |
|
(a b p : β) |
|
(hβ: 0 < a β§ 0 < b) |
|
(hp: Nat.Prime p) |
|
(hβ: a^p = Nat.factorial b + p) : |
|
(a, b, p) = (2, 2, 2) β¨ (a, b, p) = (3, 4, 3) := by |
|
by_cases hbp: b < p -- no solution |
|
. exfalso |
|
by_cases hab: a β€ b |
|
. have hβ: a β£ b.factorial := by exact Nat.dvd_factorial hβ.1 hab |
|
have gβ: a β£ b.factorial + p := by |
|
rw [β hβ] |
|
refine dvd_pow_self a ?_ |
|
exact Nat.Prime.ne_zero hp |
|
have hβ: a β£ p := by exact (Nat.dvd_add_right hβ).mp gβ |
|
have hβ: a = 1 := by |
|
have gβ: a = 1 β¨ a = p := by |
|
exact (Nat.dvd_prime hp).mp hβ |
|
cases' gβ with gββ gββ |
|
. exact gββ |
|
. exfalso |
|
rw [β gββ] at hbp |
|
linarith[hbp,hab] |
|
rw [hβ] at hβ |
|
simp at hβ |
|
have hβ
: 2 β€ p := by exact Nat.Prime.two_le hp |
|
have gβ: 0 < b.factorial := by exact Nat.factorial_pos b |
|
have hβ: 1+2 β€ b.factorial + p := by exact Nat.add_le_add gβ hβ
|
|
rw [β hβ] at hβ |
|
linarith |
|
. push_neg at hab |
|
have hβ: (b+1)^p β€ a^p := by |
|
refine (Nat.pow_le_pow_iff_left ?_).mpr hab |
|
exact Nat.Prime.ne_zero hp |
|
have hβ: b^p + p*b + 1 β€ (b+1)^p := by |
|
ring_nf |
|
rw [add_assoc] |
|
exact mylemma_1 b p hβ.2 hbp |
|
have gβ: p * 1 β€ p * b := by |
|
refine mul_le_mul ?_ ?_ ?_ ?_ |
|
. exact rfl.ge |
|
. exact hβ.2 |
|
. norm_num |
|
. exact Nat.zero_le p |
|
have gβ: b.factorial β€ b^b := by exact Nat.factorial_le_pow b |
|
have gβ
: b^b β€ b^p := by |
|
refine Nat.pow_le_pow_of_le_right hβ.2 ?_ |
|
exact le_of_lt hbp |
|
linarith |
|
. push_neg at hbp |
|
have hβ: p β£ a := by exact mylemma_3 a b p hp hβ hbp |
|
by_cases hb2p: b < 2*p |
|
. have hβ: a = p := by exact mylemma_4 a b p hβ hp hβ hbp hβ hb2p |
|
rw [hβ] at hβ |
|
by_cases hp5: p < 5 |
|
. have hβ: 2 β€ p := by exact Prime.two_le hp |
|
interval_cases p |
|
. left |
|
norm_num at hβ |
|
have hβ: b.factorial = 2 := by linarith |
|
have gβ
: (2:β).factorial = 2 := by norm_num |
|
rw [β gβ
] at hβ |
|
have hβ
: b = 2 := by |
|
refine (Nat.factorial_inj ?_).mp hβ |
|
linarith |
|
rw [hβ,hβ
] |
|
. right |
|
norm_num at hβ |
|
rw [hβ] |
|
have hβ: b.factorial = 24 := by linarith |
|
have gβ
: (4:β).factorial = 24 := by exact rfl |
|
rw [β gβ
] at hβ |
|
have hβ
: b = 4 := by |
|
refine (Nat.factorial_inj ?_).mp hβ |
|
linarith |
|
rw [hβ
] |
|
. exfalso |
|
contradiction |
|
. push_neg at hp5 |
|
exfalso -- lifting the exponent |
|
exact mylemma_5 b p hp hbp hβ hp5 |
|
. push_neg at hb2p |
|
exfalso |
|
have hβ: p^2 β£ a^p - b.factorial := by exact mylemma_6 a b p hp hβ hb2p |
|
have gβ: b.factorial β€ a^p := by exact le.intro (hβ.symm) |
|
have gβ: a^p - b.factorial = p := by |
|
rw [add_comm] at hβ |
|
exact (Nat.sub_eq_iff_eq_add gβ).mpr hβ |
|
have hβ: p^2 β£ p := by |
|
rw [gβ] at hβ |
|
exact hβ |
|
have gp: 0 < p := by exact Prime.pos hp |
|
have hβ
: p^2 β€ p := by exact Nat.le_of_dvd gp hβ |
|
have gβ: 1 < p := by exact Prime.one_lt hp |
|
have hβ: p^1 < p^2 := by exact Nat.pow_lt_pow_succ gβ |
|
linarith |
|
|