IMO-Steps / imo_proofs /imo_2022_p5.lean
roozbeh-yz's picture
Upload 42 files
1c3ffd8 verified
import Mathlib
set_option linter.unusedVariables.analyzeTactics true
open Nat
lemma mylemma_1
(b p: β„•)
(hβ‚€: 0 < b)
(hbp: b < p) :
(1 + (b * p + b ^ p) ≀ (1 + b) ^ p) := by
refine Nat.le_induction ?_ ?_ p hbp
. rw [add_pow 1 b b.succ]
rw [Finset.sum_range_succ _ b.succ]
simp
rw [Finset.sum_range_succ _ b]
simp
rw [add_comm _ (b * (b + 1))]
have gb: b = b - 1 + 1 := by exact (Nat.sub_eq_iff_eq_add hβ‚€).mp rfl
nth_rewrite 7 [gb]
rw [Finset.sum_range_succ' _ (b-1)]
simp
omega
. intros n _ hβ‚‚
nth_rewrite 2 [pow_add]
rw [pow_one]
have h₃: (1 + (b * n + b ^ n)) * (1 + b) ≀ ((1 + b) ^ n) * (1 + b) := by
exact mul_le_mul_right' hβ‚‚ (1 + b)
have hβ‚„: 1 + (b * (n + 1) + b ^ (n + 1)) ≀ (1 + (b * n + b ^ n)) * (1 + b) := by
ring_nf
rw [Nat.add_assoc _ (b ^ 2 * n) (b ^ n)]
exact Nat.le_add_right (1 + b + b * b ^ n + b * n) (b ^ 2 * n + b ^ n)
exact le_trans hβ‚„ h₃
lemma mylemma_2
(b: β„•) :
(b.factorial ≀ b ^ b) := by
-- exact factorial_le_pow b
-- lean 4 has the lemma factorial_le_pow
induction' b with n hi
. norm_num
. by_cases hnp: 0 < n
. rw [ factorial_succ, pow_add, pow_one, mul_comm ]
refine mul_le_mul_right (n + 1) ?_
have hβ‚‚: n^ n ≀ (n + 1)^n := by
refine (Nat.pow_le_pow_iff_left ?_).mpr ?_
. linarith
. linarith
exact le_trans hi hβ‚‚
. push_neg at hnp
interval_cases n
simp
lemma mylemma_3
(a b p: β„•)
(hp: Nat.Prime p)
(h₁: a ^ p = b.factorial + p)
(hbp: p ≀ b) :
(p ∣ a) := by
have hβ‚‚: p ∣ b.factorial := by exact Nat.dvd_factorial (Nat.Prime.pos hp) hbp
have h₃: p ∣ b.factorial + p := by exact Nat.dvd_add_self_right.mpr hβ‚‚
have hβ‚„: p ∣ a^p := by
rw [h₁]
exact h₃
exact Nat.Prime.dvd_of_dvd_pow hp hβ‚„
lemma mylemma_42
(a b : β„•)
(hβ‚€: 2 ≀ a)
(h₁: a < b) :
(a + b < a * b ) := by
have hβ‚‚: a + b < b + b := by exact add_lt_add_right h₁ b
have h₃: b + b ≀ a * b := by
rw [← two_mul]
exact mul_le_mul_right' hβ‚€ b
exact gt_of_ge_of_gt h₃ hβ‚‚
lemma mylemma_43
(p: β„•) :
(Finset.Ico p (2 * p - 1)).prod (fun x => x + 1)
= (Finset.range (p - 1)).prod (fun x => p + (x + 1)) := by
rw [Finset.prod_Ico_eq_prod_range _ (p) (2 * p - 1)]
have hβ‚€: 2 * p - 1 - p = p - 1 := by omega
rw [hβ‚€]
exact rfl
lemma mylemma_44
(p: β„•)
(hp: 2 ≀ p) :
(Finset.range (p - 1)).prod (fun (x : β„•) => x + 1)
= (Finset.range (p - 1)).prod (fun (x : β„•) => p - (x + 1)) := by
refine Nat.le_induction ?_ ?_ p hp
. norm_num
. intros n hn2 hβ‚€
simp at *
have hn: 0 < n := by exact lt_of_succ_lt hn2
rw [← Nat.mul_factorial_pred hn, hβ‚€]
let f: (β„• β†’ β„•) := fun (x : β„•) => n - x
have h₁: (Finset.range n).prod f =
(Finset.range 1).prod f * (Finset.Ico 1 n).prod f := by
exact (Finset.prod_range_mul_prod_Ico (fun k => n - k) hn).symm
rw [h₁]
have hβ‚‚: (Finset.range 1).prod f = n := by
exact Finset.prod_range_one fun k => n - k
rw [hβ‚‚]
simp
left
rw [Finset.prod_Ico_eq_prod_range f 1 n]
ring_nf
exact rfl
lemma mylemma_41
(b p: β„•)
-- (hβ‚€: 0 < b)
(hp: Nat.Prime p)
(hb2p: b < 2 * p) :
b.factorial + p < p ^ (2 * p) := by
have h₁: b.factorial ≀ (2*p - 1).factorial := by
refine factorial_le ?_
exact le_pred_of_lt hb2p
have gp: 2 ≀ p := by exact Prime.two_le hp
have gp1: (p - 1) + 1 = p := by
refine Nat.sub_add_cancel ?_
exact one_le_of_lt gp
let f: (β„• β†’ β„•) := (fun (x : β„•) => x + 1)
have hβ‚‚: (Finset.range (2 * p - 1)).prod f =
(Finset.range (p - 1)).prod (fun (x : β„•) => p^2 - (x+1)^2) * p := by
-- break the prod into three segments rang(p-1) + p + (p+1) until 2p-1
have gβ‚€: (Finset.range (2 * p - 1)).prod f = (Finset.range ((p - 1) + 1)).prod f
* (Finset.Ico ((p - 1) + 1) (2 * p - 1)).prod f := by
symm
refine Finset.prod_range_mul_prod_Ico f ?_
rw [gp1]
have ggβ‚€: p + 2 - 1 ≀ 2 * p - 1 := by
refine Nat.sub_le_sub_right ?_ 1
rw [add_comm]
exact add_le_mul (by norm_num) gp
exact le_of_lt ggβ‚€
have g₁: (Finset.range ((p - 1) + 1)).prod (fun (x : β„•) => x + 1) =
(Finset.range (p - 1)).prod (fun (x : β„•) => x + 1) * ((p - 1) + 1) := by
exact Finset.prod_range_succ _ (p - 1)
rw [g₁] at gβ‚€
nth_rewrite 2 [mul_comm] at gβ‚€
rw [← mul_assoc] at gβ‚€
rw [gp1] at gβ‚€ g₁
have gβ‚‚: (Finset.Ico ((p - 1) + 1) (2 * p - 1)).prod (fun (x : β„•) => x + 1)
= (Finset.range (p - 1)).prod (fun (x : β„•) => p + (x+1)) := by
rw [gp1]
exact mylemma_43 p
have g₃: (Finset.range (p - 1)).prod (fun (x : β„•) => x + 1)
= (Finset.range (p - 1)).prod (fun (x : β„•) => p - (x+1)) := by
exact mylemma_44 p gp
rw [gp1] at gβ‚‚
rw [gβ‚‚,g₃] at gβ‚€
have gβ‚„: (Finset.range (p - 1)).prod (fun (x : β„•) => p + (x+1))
* (Finset.range (p - 1)).prod (fun (x : β„•) => p - (x+1))
= (Finset.range (p - 1)).prod (fun (x : β„•) => (p + (x+1)) * (p - (x+1))) := by
symm
exact Finset.prod_mul_distrib
have gβ‚…: (fun (x : β„•) => p ^ 2 - (x+1) ^ 2) = (fun (x : β„•) => (p + (x+1)) * (p - (x+1))) := by
ext1 x
exact Nat.sq_sub_sq p (x + 1)
rw [gβ‚„,← gβ‚…] at gβ‚€
exact gβ‚€
have h₃: (Finset.range (p - 1)).prod (fun (x : β„•) => p^2 - (x+1)^2) * p
≀ (p^2)^(Finset.range (p - 1)).card * p := by
refine Nat.mul_le_mul_right ?_ ?_
refine Finset.prod_le_pow_card (Finset.range (p - 1)) ?_ (p^2) ?_
intros x _
exact (p ^ 2).sub_le ((x + 1) ^ 2)
simp at *
have hβ‚„: b.factorial + p ≀ (p ^ 2) ^ (p - 1) * p + p := by
refine add_le_add_right ?_ p
refine le_trans ?_ h₃
rw [← hβ‚‚]
rw [Finset.prod_range_add_one_eq_factorial]
exact h₁
have hβ‚…: b.factorial + p < (p ^ 2) ^ (p - 1) * p * p := by
refine lt_of_le_of_lt hβ‚„ ?_
rw [add_comm]
nth_rewrite 2 [mul_comm]
refine mylemma_42 p ((p ^ 2) ^ (p - 1) * p) gp ?_
refine lt_mul_left (by linarith) ?_
rw [← pow_mul]
refine Nat.one_lt_pow ?_ (Nat.lt_of_succ_le gp)
refine Nat.mul_ne_zero (by norm_num) ?_
exact Nat.sub_ne_zero_iff_lt.mpr gp
rw [mul_assoc _ p p, ← pow_two p] at hβ‚…
rw [← Nat.pow_succ, succ_eq_add_one, gp1] at hβ‚…
rw [Nat.pow_mul]
exact hβ‚…
lemma mylemma_4
(a b p: β„•)
(hβ‚€: 0 < a ∧ 0 < b)
(hp: Nat.Prime p)
(h₁: a ^ p = b.factorial + p)
(hbp: p ≀ b)
(hβ‚‚: p ∣ a)
(hb2p: b < 2 * p) :
(a = p) := by
have gp: p ≀ a := by exact Nat.le_of_dvd hβ‚€.1 hβ‚‚
cases' lt_or_eq_of_le gp with h₃ h₃
. exfalso
cases' hβ‚‚ with c hβ‚‚
have gc: 0 < c := by
by_contra! hc0
interval_cases c
simp at *
linarith
by_cases hc: c < p
. have g₁: c ∣ c^p := by exact dvd_pow_self c (by linarith)
have hβ‚„: c ∣ a^p := by
rw [hβ‚‚, mul_pow]
exact dvd_mul_of_dvd_right g₁ (p ^ p)
have hβ‚…: c ∣ b.factorial := by exact Nat.dvd_factorial gc (by linarith)
have gβ‚‚: p = a ^ p - b.factorial := by
symm
rw [add_comm] at h₁
refine (Nat.sub_eq_iff_eq_add ?_).mpr h₁
rw [add_comm] at h₁
exact le.intro (h₁.symm)
have h₆: c ∣ p := by
rw [gβ‚‚]
exact dvd_sub' hβ‚„ hβ‚…
have h₇: c = 1 ∨ c = p := by exact (dvd_prime hp).mp h₆
cases' h₇ with h₇₀ h₇₁
. rw [h₇₀, mul_one] at hβ‚‚
rw [hβ‚‚] at h₃
linarith [h₃]
. rw [h₇₁] at hc
simp at hc
. push_neg at hc
have g₃: p^2 ≀ a := by
rw [hβ‚‚, pow_two]
exact mul_le_mul_left' hc p
have h₃: p^(2*p) ≀ a^p := by
rw [pow_mul]
exact pow_left_mono p g₃
have h₇: b.factorial + p < p^(2*p) := by exact mylemma_41 b p hp hb2p
rw [←h₁] at h₇
linarith
exact h₃.symm
lemma mylemma_53
(p: β„•)
(hp5: 5 ≀ p) :
((↑p:β„€) ^ p ≑ ↑p * (↑p + 1) * (-1) ^ (p - 1) + (-1) ^ p [ZMOD (↑p + 1) ^ 2]) := by
-- have h₁: ↑p ^ p = Finset.range -- binomial expansion
-- take the first two elements out
-- show that all the other elements are individually divisible by (p+1)^2
-- conclude that their sum is divisible by (p+1)^2
-- summation ≑ 0 [ZMOD (↑p + 1) ^ 2]
-- now show that Nat.modeq.add
have hβ‚€: (↑p:β„€) = (↑p + 1) - 1 := by simp
have h₁: ↑p ^ p ≑ ((↑p + 1) - 1) ^ p [ZMOD (↑p + 1) ^ 2] := by rw [← hβ‚€]
have hβ‚‚: (((↑p:β„€) + 1) - 1) ^ p = (↑p * (↑p + 1) * (-1:β„€) ^ (p - 1) + (-1) ^ p)
+ (Finset.Ico 2 (p + 1)).sum (fun (k : β„•) =>
(↑p + 1) ^ k * (-1:β„€) ^ (p - k) * ↑(p.choose k)) := by
rw [sub_eq_add_neg]
rw [add_pow ((↑p:β„€) + 1) (-1:β„€)]
have gβ‚€: 2 ≀ p + 1 := by
have ggβ‚€: 5 + 1 ≀ p + 1 := by exact add_le_add_right hp5 1
refine le_trans ?_ ggβ‚€
norm_num
have g₁: 1 ≀ 2 := by norm_num
rw [← Finset.sum_range_add_sum_Ico _ gβ‚€]
rw [← Finset.sum_range_add_sum_Ico _ g₁]
simp
rw [add_comm]
simp
rw [mul_comm]
rw [mul_assoc]
have h₃: 0 ≑ (Finset.Ico 2 (p + 1)).sum (fun (k : β„•) => (↑p + 1) ^ k * (-1) ^ (p - k) * ↑(p.choose k))
[ZMOD (↑p + 1) ^ 2] := by
refine Int.modEq_of_dvd ?_
simp
refine Finset.dvd_sum ?_
intros x gβ‚€
have gx: 2 ≀ x := by exact (Finset.mem_Ico.mp gβ‚€).left
rw [mul_assoc]
refine dvd_mul_of_dvd_left ?_ ((-1:β„€) ^ (p - x) * ↑(p.choose x))
refine pow_dvd_pow ((↑p:β„€) + 1) gx
rw [hβ‚‚] at h₁
rw [← add_zero ((↑p:β„€) ^ p)] at h₁
exact Int.ModEq.add_right_cancel h₃ h₁
lemma mylemma_52
(p: β„•)
(hp: Nat.Prime p)
(hp5: 5 ≀ p)
(hβ‚€: (p + 1) ^ 2 ∣ p ^ p - p) :
False := by
have h₁: ((↑p^p - ↑p):β„€) ≑ (↑(p.choose 1) * ↑(p + 1) * (-1:β„€)^(p-1) + (-1:β„€)^p) - ↑p
[ZMOD ↑(p+1)^2] := by
refine Int.ModEq.sub_right (↑p) ?_
simp
exact mylemma_53 p hp5
have gpo: Odd p := by
refine Nat.Prime.odd_of_ne_two hp ?_
linarith [hp5]
have gpe: Even (p - 1) := by
refine hp.even_sub_one ?_
linarith [hp5]
have g₁: (-1:β„€) ^ (p - 1) = 1 := by exact Even.neg_one_pow gpe
have gβ‚‚: (-1:β„€) ^ (p) = -1 := by exact Odd.neg_one_pow gpo
rw [g₁,gβ‚‚] at h₁
simp at h₁
have hβ‚‚: (p ^ p - p) ≑ (p * (p + 1)) - 1 - p [MOD ((p + 1) ^ 2)] := by
refine Int.natCast_modEq_iff.mp ?_
have g₃: p ≀ p^p := by
refine Nat.le_self_pow (by linarith) _
rw [Nat.cast_sub g₃]
have gβ‚„: p ≀ p * (p + 1) - 1 := by
rw [mul_add]
simp
rw [add_comm, Nat.add_sub_assoc]
. simp
. rw [← pow_two]
refine Nat.one_le_pow 2 p (by linarith)
rw [Nat.cast_sub gβ‚„]
have gβ‚…: 1 ≀ p * (p + 1) := by
rw [← mul_one (p * (p + 1))]
refine Nat.le_mul_of_pos_left ?_ ?_
refine Nat.mul_pos (by linarith) (by linarith)
rw [Nat.cast_sub gβ‚…]
rw [← sub_eq_add_neg] at h₁
norm_cast
norm_cast at h₁
have h₃: p * (p + 1) - 1 - p = p^2 - 1 := by
rw [Nat.sub_sub, mul_add]
simp
rw [← pow_two]
exact Nat.add_sub_add_right (p^2) p 1
rw [h₃] at hβ‚‚
clear h₃ gpo gpe g₁ gβ‚‚
-- now derive a line of contradictions from hβ‚€
have hc₁: (p ^ p - p) ≑ 0 [MOD (p+1)^2] := by exact modEq_zero_iff_dvd.mpr hβ‚€
-- mix the contradiction with what we had in hβ‚‚
have hβ‚„: p ^ 2 - 1 ≑ 0 [MOD (p+1)^2] := by
apply Nat.ModEq.symm at hβ‚‚
exact Nat.ModEq.trans hβ‚‚ hc₁
have hβ‚…: p - 1 ≑ 0 [MOD (p+1)] := by
rw [pow_two] at hβ‚„
have gβ‚€: p^2 - 1^2 = (p-1) * (p+1) := by
rw [mul_comm]
exact Nat.sq_sub_sq p 1
simp at gβ‚€
rw [gβ‚€] at hβ‚„
have g₁: p + 1 β‰  0 := by linarith
refine Nat.ModEq.mul_right_cancel' g₁ ?_
rw [zero_mul]
exact hβ‚„
have h₆: p - 1 ≀ 0 := by
refine Nat.ModEq.le_of_lt_add hβ‚… ?_
simp
rw [← succ_eq_add_one]
refine Nat.sub_lt_succ p 1
have h₇: 0 < p - 1 := by
simp
linarith
linarith [h₆,h₇]
lemma mylemma_51
(p: β„•)
(hpl: 5 ≀ p) :
(p + p.factorial < p ^ p) := by
-- we use induction
refine Nat.le_induction ?_ ?_ p (hpl)
. exact Nat.lt_of_sub_eq_succ rfl
. intros n hn h₁
have hβ‚‚: n + 1 + (n + 1).factorial = (n.factorial + 1) * (n + 1) := by
rw[add_mul, one_mul, Nat.factorial_succ]
rw [add_comm (n + 1)]
rw [mul_comm (n + 1)]
rw [hβ‚‚, pow_add, pow_one ]
refine Nat.mul_lt_mul_of_pos_right ?_ (by linarith)
have hβ‚…: n ^ n < (n + 1) ^ n := by
refine Nat.pow_lt_pow_left ?_ ?_
. exact lt_add_one n
. refine Nat.ne_of_gt ?_
linarith
linarith
lemma mylemma_5
(b p: β„•)
(hp: Nat.Prime p)
(hbp: p ≀ b)
(h₁: p ^ p = b.factorial + p)
(hp5: 5 ≀ p) :
(False) := by
-- first prove that b = p cannot be
by_cases hβ‚„: b = p
. have hβ‚…: p + p.factorial < p^p := by exact mylemma_51 p hp5
rw [hβ‚„] at h₁
linarith
. have hpb: p < b := by exact lt_of_le_of_ne' hbp hβ‚„
clear hbp hβ‚„
have hβ‚‚: (p + 1) ^ 2 ∣ b.factorial := by
have g₁: p + 1 ≀ b := by exact succ_le_iff.mpr hpb
have gβ‚‚: 2 ∣ (p + 1) := by
have gg₁: Odd p := by
refine hp.odd_of_ne_two ?_
linarith
have ggβ‚‚: Even (p + 1) := by
refine gg₁.add_odd ?_
norm_num
exact even_iff_two_dvd.mp ggβ‚‚
have g₃: 2 * ((p+1)/2) * (p + 1) ∣ b.factorial := by
have gg₁: (p + 1).factorial ∣ b.factorial := by exact Nat.factorial_dvd_factorial g₁
have ggβ‚‚: (p + 1).factorial = (p + 1) * p.factorial := by exact factorial_succ p
rw [mul_comm] at ggβ‚‚
have gg₃: 6/2 ≀ (p + 1)/2 := by
refine Nat.div_le_div_right ?_
linarith
norm_num at gg₃
have ggβ‚„: 2 + (p+1)/2 ≀ p := by -- strong induction
refine Nat.le_induction ?_ ?_ p (hp5)
. norm_num
. intros n _ hβ‚‚
ring_nf
have ggg₁: (n / 2).succ ≀ (n + 1) / 2 + 1 := by
rw [← succ_eq_add_one]
refine Nat.succ_le_succ ?_
refine Nat.div_le_div_right ?_
linarith
simp
nth_rewrite 1 [← mul_one 2]
rw [Nat.two_mul 1, add_assoc]
refine Nat.add_le_add_left ?_ 1
refine le_trans ?_ hβ‚‚
rw [add_comm 2 _]
nth_rewrite 3 [← mul_one 2]
rw [Nat.two_mul 1, ← add_assoc, add_comm 1]
exact Nat.add_le_add_right ggg₁ 1
have ggβ‚…: (2+(p+1)/2).factorial ∣ p.factorial := by
exact factorial_dvd_factorial ggβ‚„
have gg₆: (2:β„•).factorial * ((p+1)/2).factorial ∣ p.factorial := by
refine dvd_trans ?_ ggβ‚…
exact (2:β„•).factorial_mul_factorial_dvd_factorial_add ((p + 1) / 2)
have gg₇: 2 * ((p+1)/2) ∣ p.factorial := by
refine dvd_trans ?_ gg₆
simp
refine mul_dvd_mul_left 2 ?_
refine Nat.dvd_factorial (by linarith[gg₃]) (by linarith)
have ggβ‚ˆ: 2 * ((p+1)/2) * (p + 1) ∣ p.factorial * (p + 1) := by
refine mul_dvd_mul_right ?_ (p + 1)
exact gg₇
rw [ggβ‚‚] at gg₁
exact dvd_trans ggβ‚ˆ gg₁
have gβ‚„: 2 * ((p+1)/2) = (p + 1) := by
exact Nat.mul_div_cancel' gβ‚‚
rw [gβ‚„] at g₃
ring_nf at *
exact g₃
have h₃: b.factorial = p ^ p - p := by exact eq_tsub_of_add_eq (h₁.symm)
rw [h₃] at hβ‚‚
exact mylemma_52 p hp hp5 hβ‚‚
lemma mylemma_6
(a b p: β„•)
(hp: Nat.Prime p)
(hβ‚‚: p ∣ a)
(hb2p: 2 * p ≀ b) :
(p ^ 2 ∣ a ^ p - b.factorial) := by
have g₁: p^p ∣ a^p := by exact pow_dvd_pow_of_dvd hβ‚‚ p
have gβ‚‚: 2 ≀ p := by exact Prime.two_le hp
have h₃: p^2 ∣ a^p := by exact pow_dvd_of_le_of_pow_dvd gβ‚‚ g₁
have g₃: (2*p).factorial ∣ b.factorial := by exact factorial_dvd_factorial hb2p
have gβ‚„: p.factorial * p.factorial ∣ (p+p).factorial := by
exact factorial_mul_factorial_dvd_factorial_add p p
rw [← pow_two, ← two_mul] at gβ‚„
have gβ‚…: p ∣ p.factorial := by exact Nat.dvd_factorial (by linarith) (by linarith)
have hβ‚„: p ^ 2 ∣ p.factorial ^ 2 := by exact pow_dvd_pow_of_dvd gβ‚… 2
have g₆: p ^ 2 ∣ (2 * p).factorial := by exact dvd_trans hβ‚„ gβ‚„
have hβ‚…: p^2 ∣ b.factorial := by exact dvd_trans g₆ g₃
exact dvd_sub' h₃ hβ‚…
theorem imo_2022_p5
(a b p : β„•)
(hβ‚€: 0 < a ∧ 0 < b)
(hp: Nat.Prime p)
(h₁: a^p = Nat.factorial b + p) :
(a, b, p) = (2, 2, 2) ∨ (a, b, p) = (3, 4, 3) := by
by_cases hbp: b < p -- no solution
. exfalso
by_cases hab: a ≀ b
. have hβ‚‚: a ∣ b.factorial := by exact Nat.dvd_factorial hβ‚€.1 hab
have g₃: a ∣ b.factorial + p := by
rw [← h₁]
refine dvd_pow_self a ?_
exact Nat.Prime.ne_zero hp
have h₃: a ∣ p := by exact (Nat.dvd_add_right hβ‚‚).mp g₃
have hβ‚„: a = 1 := by
have gβ‚„: a = 1 ∨ a = p := by
exact (Nat.dvd_prime hp).mp h₃
cases' gβ‚„ with gβ‚„β‚€ g₄₁
. exact gβ‚„β‚€
. exfalso
rw [← g₄₁] at hbp
linarith[hbp,hab]
rw [hβ‚„] at h₁
simp at h₁
have hβ‚…: 2 ≀ p := by exact Nat.Prime.two_le hp
have g₆: 0 < b.factorial := by exact Nat.factorial_pos b
have h₇: 1+2 ≀ b.factorial + p := by exact Nat.add_le_add g₆ hβ‚…
rw [← h₁] at h₇
linarith
. push_neg at hab
have hβ‚‚: (b+1)^p ≀ a^p := by
refine (Nat.pow_le_pow_iff_left ?_).mpr hab
exact Nat.Prime.ne_zero hp
have h₃: b^p + p*b + 1 ≀ (b+1)^p := by
ring_nf
rw [add_assoc]
exact mylemma_1 b p hβ‚€.2 hbp
have gβ‚„: p * 1 ≀ p * b := by
refine mul_le_mul ?_ ?_ ?_ ?_
. exact rfl.ge
. exact hβ‚€.2
. norm_num
. exact Nat.zero_le p
have gβ‚„: b.factorial ≀ b^b := by exact Nat.factorial_le_pow b
have gβ‚…: b^b ≀ b^p := by
refine Nat.pow_le_pow_of_le_right hβ‚€.2 ?_
exact le_of_lt hbp
linarith
. push_neg at hbp
have hβ‚‚: p ∣ a := by exact mylemma_3 a b p hp h₁ hbp
by_cases hb2p: b < 2*p
. have h₃: a = p := by exact mylemma_4 a b p hβ‚€ hp h₁ hbp hβ‚‚ hb2p
rw [h₃] at h₁
by_cases hp5: p < 5
. have hβ‚„: 2 ≀ p := by exact Prime.two_le hp
interval_cases p
. left
norm_num at h₁
have hβ‚„: b.factorial = 2 := by linarith
have gβ‚…: (2:β„•).factorial = 2 := by norm_num
rw [← gβ‚…] at hβ‚„
have hβ‚…: b = 2 := by
refine (Nat.factorial_inj ?_).mp hβ‚„
linarith
rw [h₃,hβ‚…]
. right
norm_num at h₁
rw [h₃]
have hβ‚„: b.factorial = 24 := by linarith
have gβ‚…: (4:β„•).factorial = 24 := by exact rfl
rw [← gβ‚…] at hβ‚„
have hβ‚…: b = 4 := by
refine (Nat.factorial_inj ?_).mp hβ‚„
linarith
rw [hβ‚…]
. exfalso
contradiction
. push_neg at hp5
exfalso -- lifting the exponent
exact mylemma_5 b p hp hbp h₁ hp5
. push_neg at hb2p
exfalso
have h₃: p^2 ∣ a^p - b.factorial := by exact mylemma_6 a b p hp hβ‚‚ hb2p
have g₃: b.factorial ≀ a^p := by exact le.intro (h₁.symm)
have gβ‚„: a^p - b.factorial = p := by
rw [add_comm] at h₁
exact (Nat.sub_eq_iff_eq_add g₃).mpr h₁
have hβ‚„: p^2 ∣ p := by
rw [gβ‚„] at h₃
exact h₃
have gp: 0 < p := by exact Prime.pos hp
have hβ‚…: p^2 ≀ p := by exact Nat.le_of_dvd gp hβ‚„
have g₆: 1 < p := by exact Prime.one_lt hp
have h₆: p^1 < p^2 := by exact Nat.pow_lt_pow_succ g₆
linarith