IMO-Steps / Lemmas /imo_2022_p5_lemmas.lean
roozbeh-yz's picture
Upload 42 files
1c3ffd8 verified
import Mathlib
set_option linter.unusedVariables.analyzeTactics true
open Nat
lemma imo_2022_p5_1
(b p: β„•)
(hβ‚€: 0 < b)
-- (hp: Nat.prime p)
(hbp: b < p) :
(1 + (b * p + b ^ p) ≀ (1 + b) ^ p) := by
refine Nat.le_induction ?_ ?_ p hbp
. rw [add_pow 1 b b.succ]
rw [Finset.sum_range_succ _ b.succ]
simp
rw [add_comm (βˆ‘ x ∈ Finset.range (b + 1), b ^ (b + 1 - x) * (b + 1).choose x) 1]
simp
rw [Finset.sum_range_succ _ b]
simp
rw [add_comm _ (b * (b + 1))]
simp
have gb: b = b - 1 + 1 := by exact (Nat.sub_eq_iff_eq_add hβ‚€).mp rfl
nth_rewrite 3 [gb]
rw [Finset.sum_range_succ' _ (b-1)]
simp
. intros n _ hβ‚‚
nth_rewrite 2 [pow_add]
rw [pow_one]
have h₃: (1 + (b * n + b ^ n)) * (1 + b) ≀ ((1 + b) ^ n) * (1 + b) := by
exact mul_le_mul_right' hβ‚‚ (1 + b)
have hβ‚„: 1 + (b * (n + 1) + b ^ (n + 1)) ≀ (1 + (b * n + b ^ n)) * (1 + b) := by
ring_nf
rw [Nat.add_assoc _ (b ^ 2 * n) (b ^ n)]
exact Nat.le_add_right (1 + b + b * b ^ n + b * n) (b ^ 2 * n + b ^ n)
exact le_trans hβ‚„ h₃
lemma imo_2022_p5_1_1
(b : β„•)
-- (p : β„•)
(hβ‚€ : 0 < b) :
-- (hbp : b < p) :
1 + (b * succ b + b ^ succ b) ≀ (1 + b) ^ succ b := by
rw [add_pow 1 b b.succ]
rw [Finset.sum_range_succ _ b.succ]
simp
rw [add_comm (βˆ‘ x ∈ Finset.range (b + 1), b ^ (b + 1 - x) * (b + 1).choose x) 1]
simp
rw [Finset.sum_range_succ _ b]
simp
rw [add_comm _ (b * (b + 1))]
simp
have gb: b = b - 1 + 1 := by exact (Nat.sub_eq_iff_eq_add hβ‚€).mp rfl
nth_rewrite 3 [gb]
rw [Finset.sum_range_succ' _ (b-1)]
simp
lemma imo_2022_p5_1_2
(b : β„•)
-- (p : β„•)
(hβ‚€ : 0 < b) :
-- (hbp : b < p) :
1 + (b * succ b + b ^ succ b) ≀
(Finset.sum (Finset.range (succ b)) fun x => 1 ^ x * b ^ (succ b - x) * ↑(choose (succ b) x)) +
1 ^ succ b * b ^ (succ b - succ b) * ↑(choose (succ b) (succ b)) := by
simp
rw [add_comm (βˆ‘ x ∈ Finset.range (b + 1), b ^ (b + 1 - x) * (b + 1).choose x) 1]
simp
rw [Finset.sum_range_succ _ b]
simp
rw [add_comm _ (b * (b + 1))]
simp
have gb: b = b - 1 + 1 := by exact (Nat.sub_eq_iff_eq_add hβ‚€).mp rfl
nth_rewrite 3 [gb]
rw [Finset.sum_range_succ' _ (b-1)]
simp
lemma imo_2022_p5_1_3
(b : β„•)
-- (p : β„•)
-- (hβ‚€ : 0 < b)
-- (hbp : b < p)
(h₁ : 1 + (b * succ b + b ^ succ b) ≀
(Finset.sum (Finset.range (succ b)) fun x => 1 ^ x * b ^ (succ b - x) * ↑(choose (succ b) x)) +
1 ^ succ b * b ^ (succ b - succ b) * ↑(choose (succ b) (succ b))) :
1 + (b * succ b + b ^ succ b) ≀ (1 + b) ^ succ b := by
rw [add_pow 1 b b.succ]
rw [Finset.sum_range_succ _ b.succ]
exact h₁
lemma imo_2022_p5_1_4
(b : β„•)
-- (p : β„•)
(hβ‚€ : 0 < b) :
-- (hbp : b < p) :
b * succ b + b ^ succ b ≀
Finset.sum (Finset.range (succ b)) fun x => b ^ (succ b - x) * choose (succ b) x := by
rw [Finset.sum_range_succ _ b]
rw [succ_eq_add_one]
simp
rw [add_comm _ (b * (b + 1))]
simp
have gb: b = b - 1 + 1 := by exact (Nat.sub_eq_iff_eq_add hβ‚€).mp rfl
nth_rewrite 3 [gb]
rw [Finset.sum_range_succ' _ (b-1)]
simp
lemma imo_2022_p5_1_5
(b : β„•)
-- (p : β„•)
-- (hβ‚€ : 0 < b)
-- (hbp : b < p)
(h₁ : b * (b + 1) + b ^ (b + 1) ≀
(Finset.sum (Finset.range b) fun x => b ^ (b + 1 - x) * choose (b + 1) x) + b ^ (b + 1 - b) * choose (b + 1) b) :
1 + (b * succ b + b ^ succ b) ≀ (1 + b) ^ succ b := by
rw [add_pow 1 b b.succ]
rw [Finset.sum_range_succ _ b.succ]
simp
rw [add_comm (βˆ‘ x ∈ Finset.range (b + 1), b ^ (b + 1 - x) * (b + 1).choose x) 1]
simp
rw [Finset.sum_range_succ _ b]
exact h₁
lemma imo_2022_p5_1_6
(b : β„•)
-- (p : β„•)
-- (hβ‚€ : 0 < b)
-- (hbp : b < p)
(h₁ : b * succ b + b ^ succ b ≀
Finset.sum (Finset.range (succ b)) fun x => b ^ (succ b - x) * choose (succ b) x) :
1 + (b * succ b + b ^ succ b) ≀
(Finset.sum (Finset.range (succ b)) fun x => 1 ^ x * b ^ (succ b - x) * ↑(choose (succ b) x)) +
1 ^ succ b * b ^ (succ b - succ b) * ↑(choose (succ b) (succ b)) := by
simp
rw [add_comm (βˆ‘ x ∈ Finset.range (b + 1), b ^ (b + 1 - x) * (b + 1).choose x) 1]
simp
exact h₁
lemma imo_2022_p5_1_7
(b : β„•)
-- (p : β„•)
(hβ‚€ : 0 < b) :
-- (hbp : b < p) :
b * succ b + b ^ succ b ≀
(Finset.sum (Finset.range b) fun x => b ^ (succ b - x)
* choose (succ b) x) + b ^ (succ b - b) * choose (succ b) b := by
rw [succ_eq_add_one]
simp
rw [add_comm _ (b * (b + 1))]
simp
have gb: b = b - 1 + 1 := by exact (Nat.sub_eq_iff_eq_add hβ‚€).mp rfl
nth_rewrite 3 [gb]
rw [Finset.sum_range_succ' _ (b-1)]
simp
lemma imo_2022_p5_1_8
(b : β„•)
-- (p : β„•)
(hβ‚€ : 0 < b) :
-- (hbp : b < p) :
b * (b + 1) + b ^ (b + 1) ≀
(Finset.sum (Finset.range b) fun x => b ^ (b + 1 - x) * choose (b + 1) x) + b * (b + 1) := by
rw [add_comm _ (b * (b + 1))]
simp
have gb: b = b - 1 + 1 := by exact (Nat.sub_eq_iff_eq_add hβ‚€).mp rfl
nth_rewrite 3 [gb]
rw [Finset.sum_range_succ' _ (b-1)]
simp
lemma imo_2022_p5_1_9
(b : β„•)
-- (p : β„•)
(hβ‚€ : 0 < b) :
-- (hbp : b < p) :
b ^ (b + 1) ≀ Finset.sum (Finset.range b) fun x => b ^ (b + 1 - x) * choose (b + 1) x := by
have gb: b = b - 1 + 1 := by exact (Nat.sub_eq_iff_eq_add hβ‚€).mp rfl
nth_rewrite 3 [gb]
rw [Finset.sum_range_succ' _ (b-1)]
simp
lemma imo_2022_p5_1_10
(b : β„•)
-- (p : β„•)
-- (hβ‚€ : 0 < b)
-- (hbp : b < p)
(gb : b = b - 1 + 1) :
b ^ (b + 1) ≀ Finset.sum (Finset.range b) fun x => b ^ (b + 1 - x) * choose (b + 1) x := by
nth_rewrite 3 [gb]
rw [Finset.sum_range_succ' _ (b-1)]
simp
lemma imo_2022_p5_1_11
(b : β„•) :
-- (p : β„•)
-- (hβ‚€ : 0 < b)
-- (hbp : b < p)
-- (gb : b = b - 1 + 1) :
b ^ (b + 1) ≀ Finset.sum (Finset.range (b - 1 + 1)) fun x => b ^ (b + 1 - x) * choose (b + 1) x := by
rw [Finset.sum_range_succ' _ (b-1)]
simp
lemma imo_2022_p5_1_12
(b : β„•) :
-- (p : β„•)
-- (hβ‚€ : 0 < b)
-- (hbp : b < p) :
βˆ€ (n : β„•), succ b ≀ n β†’ 1 + (b * n + b ^ n) ≀
(1 + b) ^ n β†’ 1 + (b * (n + 1) + b ^ (n + 1)) ≀ (1 + b) ^ (n + 1) := by
intros n _ hβ‚‚
nth_rewrite 2 [pow_add]
rw [pow_one]
have h₃: (1 + (b * n + b ^ n)) * (1 + b) ≀ ((1 + b) ^ n) * (1 + b) := by
exact mul_le_mul_right' hβ‚‚ (1 + b)
have hβ‚„: 1 + (b * (n + 1) + b ^ (n + 1)) ≀ (1 + (b * n + b ^ n)) * (1 + b) := by
ring_nf
rw [Nat.add_assoc _ (b ^ 2 * n) (b ^ n)]
exact Nat.le_add_right (1 + b + b * b ^ n + b * n) (b ^ 2 * n + b ^ n)
exact le_trans hβ‚„ h₃
lemma imo_2022_p5_1_13
(b : β„•)
-- (p : β„•)
-- (hβ‚€ : 0 < b)
-- (hbp : b < p)
(n : β„•)
-- (hmn : succ b ≀ n)
(hβ‚‚ : 1 + (b * n + b ^ n) ≀ (1 + b) ^ n) :
1 + (b * (n + 1) + b ^ (n + 1)) ≀ (1 + b) ^ n * (1 + b) := by
have h₃: (1 + (b * n + b ^ n)) * (1 + b) ≀ ((1 + b) ^ n) * (1 + b) := by
exact mul_le_mul_right' hβ‚‚ (1 + b)
have hβ‚„: 1 + (b * (n + 1) + b ^ (n + 1)) ≀ (1 + (b * n + b ^ n)) * (1 + b) := by
ring_nf
rw [Nat.add_assoc _ (b ^ 2 * n) (b ^ n)]
exact Nat.le_add_right (1 + b + b * b ^ n + b * n) (b ^ 2 * n + b ^ n)
exact le_trans hβ‚„ h₃
lemma imo_2022_p5_1_14
(b : β„•)
-- (p : β„•)
-- (hβ‚€ : 0 < b)
-- (hbp : b < p)
(n : β„•) :
-- (hβ‚‚ : 1 + (b * n + b ^ n) ≀ (1 + b) ^ n)
-- (h₃ : (1 + (b * n + b ^ n)) * (1 + b) ≀ ((1 + b) ^ n) * (1 + b)) :
1 + (b * (n + 1) + b ^ (n + 1)) ≀ (1 + (b * n + b ^ n)) * (1 + b) := by
have hβ‚„: 1 + (b * (n + 1) + b ^ (n + 1)) ≀ (1 + (b * n + b ^ n)) * (1 + b) := by
ring_nf
rw [Nat.add_assoc _ (b ^ 2 * n) (b ^ n)]
exact Nat.le_add_right (1 + b + b * b ^ n + b * n) (b ^ 2 * n + b ^ n)
refine le_trans hβ‚„ ?_
linarith
lemma imo_2022_p5_1_15
(b : β„•)
-- (p : β„•)
-- (hβ‚€ : 0 < b)
-- (hbp : b < p)
(n : β„•) :
-- (hmn : succ b ≀ n)
-- (hβ‚‚ : 1 + (b * n + b ^ n) ≀ (1 + b) ^ n)
-- (h₃ : (1 + (b * n + b ^ n)) * (1 + b) ≀ (1 + b) ^ n * (1 + b)) :
1 + b + b * b ^ n + b * n ≀ 1 + b + b * b ^ n + b * n + b ^ 2 * n + b ^ n := by
ring_nf
rw [Nat.add_assoc _ (b ^ 2 * n) (b ^ n)]
exact Nat.le_add_right (1 + b + b * b ^ n + b * n) (b ^ 2 * n + b ^ n)
lemma imo_2022_p5_2
(n : β„•)
(hi : n ! ≀ n ^ n) :
(succ n)! ≀ succ n ^ succ n := by
by_cases hnp: 0 < n
. rw [ factorial_succ, succ_eq_add_one, pow_add, pow_one, mul_comm ]
refine mul_le_mul_right (n + 1) ?_
-- have h₁: n.factorial ≀ n ^ n,
-- { exact hi hnp },
have hβ‚‚: n^ n ≀ (n + 1)^n := by
refine (Nat.pow_le_pow_iff_left ?_).mpr ?_
. linarith
. linarith
exact le_trans hi hβ‚‚
. push_neg at hnp
interval_cases n
simp
lemma imo_2022_p5_2_1
(n : β„•)
(hi : n ! ≀ n ^ n)
(hnp : 0 < n) :
(succ n)! ≀ succ n ^ succ n := by
rw [ factorial_succ, succ_eq_add_one, pow_add, pow_one, mul_comm ]
refine mul_le_mul_right (n + 1) ?_
have hβ‚‚: n^ n ≀ (n + 1)^n := by
refine (Nat.pow_le_pow_iff_left ?_).mpr ?_
. linarith
. linarith
exact le_trans hi hβ‚‚
lemma imo_2022_p5_2_2
(n : β„•)
(hi : n ! ≀ n ^ n)
(hnp : Β¬0 < n) :
(succ n)! ≀ succ n ^ succ n := by
push_neg at hnp
interval_cases n
simp
lemma imo_2022_p5_2_3
(n : β„•)
(hi : n ! ≀ n ^ n)
(hnp : 0 < n) :
-- (h₁: (succ n)! ≀ succ n ^ succ n) :
n ! * (n + 1) ≀ (n + 1) ^ n * (n + 1) := by
refine mul_le_mul_right (n + 1) ?_
have hβ‚‚: n^ n ≀ (n + 1)^n := by
refine (Nat.pow_le_pow_iff_left ?_).mpr ?_
. linarith
. linarith
exact le_trans hi hβ‚‚
lemma imo_2022_p5_2_4
(n : β„•)
(hi : n ! ≀ n ^ n)
(hnp : 0 < n) :
n ! ≀ (n + 1) ^ n := by
have hβ‚‚: n^ n ≀ (n + 1)^n := by
refine (Nat.pow_le_pow_iff_left ?_).mpr ?_
. linarith
. linarith
exact le_trans hi hβ‚‚
lemma imo_2022_p5_2_5
(n : β„•)
-- (hi : n ! ≀ n ^ n)
(hnp : 0 < n) :
n ^ n ≀ (n + 1) ^ n := by
refine (Nat.pow_le_pow_iff_left ?_).mpr ?_
. linarith
. linarith
lemma imo_2022_p5_3
(a b p: β„•)
-- (hβ‚€: 0 < a ∧ 0 < b)
(hp: Nat.Prime p)
(h₁: a ^ p = b.factorial + p)
(hbp: p ≀ b) :
(p ∣ a) := by
have hβ‚‚: p ∣ b.factorial := by exact Nat.dvd_factorial (Nat.Prime.pos hp) hbp
have h₃: p ∣ b.factorial + p := by exact Nat.dvd_add_self_right.mpr hβ‚‚
have hβ‚„: p ∣ a^p := by
rw [h₁]
exact h₃
exact Nat.Prime.dvd_of_dvd_pow hp hβ‚„
lemma imo_2022_p5_3_1
(a b p : β„•)
(hp : Nat.Prime p)
(h₁ : a ^ p = b ! + p)
-- (hbp : p ≀ b)
(hβ‚‚ : p ∣ b !) :
p ∣ a := by
have h₃: p ∣ b.factorial + p := by exact Nat.dvd_add_self_right.mpr hβ‚‚
have hβ‚„: p ∣ a^p := by
rw [h₁]
exact h₃
exact Nat.Prime.dvd_of_dvd_pow hp hβ‚„
lemma imo_2022_p5_3_2
(a b p : β„•)
(hp : Nat.Prime p)
(h₁ : a ^ p = b ! + p)
-- (hbp : p ≀ b)
-- (hβ‚‚ : p ∣ b !)
(h₃ : p ∣ b ! + p) :
p ∣ a := by
have hβ‚„: p ∣ a^p := by
rw [h₁]
exact h₃
exact Nat.Prime.dvd_of_dvd_pow hp hβ‚„
lemma imo_2022_p5_4
(a b : β„•)
(hβ‚€: 2 ≀ a)
(h₁: a < b) :
(a + b < a * b ) := by
have hβ‚‚: a + b < b + b := by exact add_lt_add_right h₁ b
have h₃: b + b ≀ a * b := by
rw [← two_mul]
exact mul_le_mul_right' hβ‚€ b
exact gt_of_ge_of_gt h₃ hβ‚‚
lemma imo_2022_p5_4_1
(a b : β„•)
(hβ‚€ : 2 ≀ a)
-- (h₁ : a < b)
(hβ‚‚ : a + b < b + b) :
a + b < a * b := by
have h₃: b + b ≀ a * b := by
rw [← two_mul]
exact mul_le_mul_right' hβ‚€ b
exact gt_of_ge_of_gt h₃ hβ‚‚
lemma imo_2022_p5_4_2
(a b : β„•)
(hβ‚€ : 2 ≀ a) :
-- (h₁ : a < b)
-- (hβ‚‚ : a + b < b + b) :
b + b ≀ a * b := by
rw [← two_mul]
exact mul_le_mul_right' hβ‚€ b
lemma imo_2022_p5_5
(p: β„•) :
(Finset.Ico p (2 * p - 1)).prod (fun x => x + 1)
= (Finset.range (p - 1)).prod (fun x => p + (x + 1)) := by
rw [Finset.prod_Ico_eq_prod_range _ (p) (2 * p - 1)]
have hβ‚€: 2 * p - 1 - p = p - 1 := by omega
rw [hβ‚€]
exact rfl
lemma imo_2022_p5_5_1
(p : β„•) :
(Finset.prod (Finset.range (2 * p - 1 - p)) fun k => p + k + 1) =
Finset.prod (Finset.range (p - 1)) fun x => p + (x + 1) := by
have hβ‚€: 2 * p - 1 - p = p - 1 := by omega
rw [hβ‚€]
exact rfl
lemma imo_2022_p5_5_2
(p : β„•)
(hβ‚€ : 2 * p - 1 - p = p - 1) :
(Finset.prod (Finset.range (2 * p - 1 - p)) fun k => p + k + 1) =
Finset.prod (Finset.range (p - 1)) fun x => p + (x + 1) := by
rw [hβ‚€]
exact rfl
lemma imo_2022_p5_6
(p: β„•)
(hp: 2 ≀ p) :
(Finset.range (p - 1)).prod (fun (x : β„•) => x + 1)
= (Finset.range (p - 1)).prod (fun (x : β„•) => p - (x + 1)) := by
refine Nat.le_induction ?_ ?_ p hp
. norm_num
. intros n hn2 hβ‚€
simp at *
have hn: 0 < n := by exact lt_of_succ_lt hn2
rw [← Nat.mul_factorial_pred hn, hβ‚€]
let f: (β„• β†’ β„•) := fun (x : β„•) => n - x
have h₁: (Finset.range n).prod f =
(Finset.range 1).prod f * (Finset.Ico 1 n).prod f := by
exact (Finset.prod_range_mul_prod_Ico (fun k => n - k) hn).symm
rw [h₁]
have hβ‚‚: (Finset.range 1).prod f = n := by
exact Finset.prod_range_one fun k => n - k
rw [hβ‚‚]
simp
left
rw [Finset.prod_Ico_eq_prod_range f 1 n]
ring_nf
exact rfl
lemma imo_2022_p5_6_1 :
-- (p : β„•)
-- (hp : 2 ≀ p) :
βˆ€ (n : β„•),
2 ≀ n β†’
((Finset.prod (Finset.range (n - 1)) fun x => x + 1) = Finset.prod (Finset.range (n - 1)) fun x => n - (x + 1)) β†’
(Finset.prod (Finset.range (n + 1 - 1)) fun x => x + 1) =
Finset.prod (Finset.range (n + 1 - 1)) fun x => n + 1 - (x + 1) := by
intros n hn2 hβ‚€
simp at *
have hn: 0 < n := by exact lt_of_succ_lt hn2
rw [← Nat.mul_factorial_pred hn, hβ‚€]
let f: (β„• β†’ β„•) := fun (x : β„•) => n - x
have h₁: (Finset.range n).prod f =
(Finset.range 1).prod f * (Finset.Ico 1 n).prod f := by
exact (Finset.prod_range_mul_prod_Ico (fun k => n - k) hn).symm
rw [h₁]
have hβ‚‚: (Finset.range 1).prod f = n := by
exact Finset.prod_range_one fun k => n - k
rw [hβ‚‚]
simp
left
rw [Finset.prod_Ico_eq_prod_range f 1 n]
ring_nf
exact rfl
lemma imo_2022_p5_6_2
-- (p : β„•)
-- (hp : 2 ≀ p)
(n : β„•)
(hn2 : 2 ≀ n)
(hβ‚€ : (n - 1)! = Finset.prod (Finset.range (n - 1)) fun x => n - (x + 1)) :
n ! = Finset.prod (Finset.range n) fun x => n - x := by
have hn: 0 < n := by exact lt_of_succ_lt hn2
rw [← Nat.mul_factorial_pred hn, hβ‚€]
let f: (β„• β†’ β„•) := fun (x : β„•) => n - x
have h₁: (Finset.range n).prod f =
(Finset.range 1).prod f * (Finset.Ico 1 n).prod f := by
exact (Finset.prod_range_mul_prod_Ico (fun k => n - k) hn).symm
rw [h₁]
have hβ‚‚: (Finset.range 1).prod f = n := by
exact Finset.prod_range_one fun k => n - k
rw [hβ‚‚]
simp
left
rw [Finset.prod_Ico_eq_prod_range f 1 n]
ring_nf
exact rfl
lemma imo_2022_p5_6_3
-- (p : β„•)
-- (hp : 2 ≀ p)
(n : β„•)
-- (hn2 : 2 ≀ n)
-- (hβ‚€ : (n - 1)! = Finset.prod (Finset.range (n - 1)) fun x => n - (x + 1))
(hn : 0 < n) :
n * (Finset.prod (Finset.range (n - 1)) fun x => n - (x + 1))
= Finset.prod (Finset.range n) fun x => n - x := by
let f: (β„• β†’ β„•) := fun (x : β„•) => n - x
have h₁: (Finset.range n).prod f =
(Finset.range 1).prod f * (Finset.Ico 1 n).prod f := by
exact (Finset.prod_range_mul_prod_Ico (fun k => n - k) hn).symm
rw [h₁]
have hβ‚‚: (Finset.range 1).prod f = n := by
exact Finset.prod_range_one fun k => n - k
rw [hβ‚‚]
simp
left
rw [Finset.prod_Ico_eq_prod_range f 1 n]
ring_nf
exact rfl
lemma imo_2022_p5_6_4
-- (p : β„•)
-- (hp : 2 ≀ p)
(n : β„•)
-- (hn2 : 2 ≀ n)
-- (hβ‚€ : (n - 1)! = Finset.prod (Finset.range (n - 1)) fun x => n - (x + 1))
(hn : 0 < n) :
-- (f : β„• β†’ β„•) :
-- (hf: f = fun x => n - x) :
n * (Finset.prod (Finset.range (n - 1)) fun x => n - (x + 1))
= Finset.prod (Finset.range n) fun x => n - x := by
have h₁: (Finset.range n).prod (fun x => n - x) =
(Finset.range 1).prod (fun x => n - x) * (Finset.Ico 1 n).prod (fun x => n - x) := by
exact (Finset.prod_range_mul_prod_Ico (fun k => n - k) hn).symm
rw [h₁]
have hβ‚‚: (Finset.range 1).prod (fun x => n - x) = n := by
-- rw [hf]
exact Finset.prod_range_one fun k => n - k
rw [hβ‚‚]
simp
left
rw [Finset.prod_Ico_eq_prod_range (fun x => n - x) 1 n]
ring_nf
lemma imo_2022_p5_6_5
-- (p : β„•)
-- (hp : 2 ≀ p)
(n : β„•)
-- (hn2 : 2 ≀ n)
-- (hβ‚€ : (n - 1)! = Finset.prod (Finset.range (n - 1)) fun x => n - (x + 1))
-- (hn : 0 < n)
(f : β„• β†’ β„•)
(hf: f = fun x => n - x)
(h₁ : Finset.prod (Finset.range n) f = Finset.prod (Finset.range 1) f * Finset.prod (Finset.Ico 1 n) f) :
n * (Finset.prod (Finset.range (n - 1)) fun x => n - (x + 1))
= Finset.prod (Finset.range n) fun x => n - x := by
rw [← hf, h₁]
have hβ‚‚: (Finset.range 1).prod f = n := by
rw [hf]
exact Finset.prod_range_one fun k => n - k
rw [hβ‚‚]
simp
left
rw [Finset.prod_Ico_eq_prod_range f 1 n]
ring_nf
rw [hf]
lemma imo_2022_p5_6_6
-- (p : β„•)
-- (hp : 2 ≀ p)
(n : β„•)
-- (hn2 : 2 ≀ n)
-- (hβ‚€ : (n - 1)! = Finset.prod (Finset.range (n - 1)) fun x => n - (x + 1))
-- (hn : 0 < n)
(f : β„• β†’ β„•)
(hf: f = fun x => n - x)
-- (h₁ : Finset.prod (Finset.range n) f = Finset.prod (Finset.range 1) f * Finset.prod (Finset.Ico 1 n) f)
(hβ‚‚ : Finset.prod (Finset.range 1) f = n) :
n * (Finset.prod (Finset.range (n - 1)) fun x => n - (x + 1)) =
Finset.prod (Finset.range 1) f * Finset.prod (Finset.Ico 1 n) f := by
rw [hβ‚‚]
simp
left
rw [Finset.prod_Ico_eq_prod_range f 1 n]
ring_nf
rw [hf]
lemma imo_2022_p5_6_7
-- (p : β„•)
-- (hp : 2 ≀ p)
(n : β„•)
-- (hn2 : 2 ≀ n)
-- (hβ‚€ : (n - 1)! = Finset.prod (Finset.range (n - 1)) fun x => n - (x + 1))
-- (hn : 0 < n)
(f : β„• β†’ β„•)
(hf: f = fun x => n - x) :
-- (h₁ : Finset.prod (Finset.range n) f = Finset.prod (Finset.range 1) f * Finset.prod (Finset.Ico 1 n) f)
-- (hβ‚‚ : Finset.prod (Finset.range 1) f = n) :
(Finset.prod (Finset.range (n - 1)) fun x => n - (x + 1)) =
Finset.prod (Finset.Ico 1 n) f ∨ n = 0 := by
left
rw [Finset.prod_Ico_eq_prod_range f 1 n]
ring_nf
rw [hf]
lemma imo_2022_p5_7
(b p: β„•)
-- (hβ‚€: 0 < b)
(hp: Nat.Prime p)
(hb2p: b < 2 * p) :
b.factorial + p < p ^ (2 * p) := by
have h₁: b.factorial ≀ (2*p - 1).factorial := by
refine factorial_le ?_
exact le_pred_of_lt hb2p
have gp: 2 ≀ p := by exact Prime.two_le hp
have gp1: (p - 1) + 1 = p := by
refine Nat.sub_add_cancel ?_
exact one_le_of_lt gp
let f: (β„• β†’ β„•) := (fun (x : β„•) => x + 1)
have hβ‚‚: (Finset.range (2 * p - 1)).prod f =
(Finset.range (p - 1)).prod (fun (x : β„•) => p^2 - (x+1)^2) * p := by
-- break the prod into three segments rang(p-1) + p + (p+1) until 2p-1
have gβ‚€: (Finset.range (2 * p - 1)).prod f = (Finset.range ((p - 1) + 1)).prod f
* (Finset.Ico ((p - 1) + 1) (2 * p - 1)).prod f := by
symm
refine Finset.prod_range_mul_prod_Ico f ?_
rw [gp1]
have ggβ‚€: p + 2 - 1 ≀ 2 * p - 1 := by
refine Nat.sub_le_sub_right ?_ 1
rw [add_comm]
exact add_le_mul (by norm_num) gp
exact le_of_lt ggβ‚€
have g₁: (Finset.range ((p - 1) + 1)).prod (fun (x : β„•) => x + 1) =
(Finset.range (p - 1)).prod (fun (x : β„•) => x + 1) * ((p - 1) + 1) := by
exact Finset.prod_range_succ _ (p - 1)
rw [g₁] at gβ‚€
nth_rewrite 2 [mul_comm] at gβ‚€
rw [← mul_assoc] at gβ‚€
rw [gp1] at gβ‚€ g₁
have gβ‚‚: (Finset.Ico ((p - 1) + 1) (2 * p - 1)).prod (fun (x : β„•) => x + 1)
= (Finset.range (p - 1)).prod (fun (x : β„•) => p + (x+1)) := by
rw [gp1]
exact imo_2022_p5_5 p
have g₃: (Finset.range (p - 1)).prod (fun (x : β„•) => x + 1)
= (Finset.range (p - 1)).prod (fun (x : β„•) => p - (x+1)) := by
exact imo_2022_p5_6 p gp
rw [gp1] at gβ‚‚
rw [gβ‚‚,g₃] at gβ‚€
have gβ‚„: (Finset.range (p - 1)).prod (fun (x : β„•) => p + (x+1))
* (Finset.range (p - 1)).prod (fun (x : β„•) => p - (x+1))
= (Finset.range (p - 1)).prod (fun (x : β„•) => (p + (x+1)) * (p - (x+1))) := by
symm
refine Finset.prod_mul_distrib
have gβ‚…: (fun (x : β„•) => p ^ 2 - (x+1) ^ 2) = (fun (x : β„•) => (p + (x+1)) * (p - (x+1))) := by
ext1 x
exact Nat.sq_sub_sq p (x + 1)
rw [gβ‚„,← gβ‚…] at gβ‚€
exact gβ‚€
have h₃: (Finset.range (p - 1)).prod (fun (x : β„•) => p^2 - (x+1)^2) * p
≀ (p^2)^(Finset.range (p - 1)).card * p := by
refine Nat.mul_le_mul_right ?_ ?_
refine Finset.prod_le_pow_card (Finset.range (p - 1)) ?_ (p^2) ?_
intros x _
exact (p ^ 2).sub_le ((x + 1) ^ 2)
simp at *
have hβ‚„: b.factorial + p ≀ (p ^ 2) ^ (p - 1) * p + p := by
refine add_le_add_right ?_ p
refine le_trans ?_ h₃
rw [← hβ‚‚]
rw [Finset.prod_range_add_one_eq_factorial]
exact h₁
have hβ‚…: b.factorial + p < (p ^ 2) ^ (p - 1) * p * p := by
refine lt_of_le_of_lt hβ‚„ ?_
rw [add_comm]
nth_rewrite 2 [mul_comm]
refine imo_2022_p5_4 p ((p ^ 2) ^ (p - 1) * p) gp ?_
refine lt_mul_left (by linarith) ?_
rw [← pow_mul]
refine Nat.one_lt_pow ?_ (Nat.lt_of_succ_le gp)
refine Nat.mul_ne_zero (by norm_num) ?_
exact Nat.sub_ne_zero_iff_lt.mpr gp
rw [mul_assoc _ p p, ← pow_two p] at hβ‚…
rw [← Nat.pow_succ, succ_eq_add_one, gp1] at hβ‚…
rw [Nat.pow_mul]
exact hβ‚…
lemma imo_2022_p5_7_1
(b p : β„•)
-- (hβ‚€ : 0 < b)
-- (hp : Nat.Prime p)
(hb2p : b < 2 * p) :
b ! ≀ (2 * p - 1)! := by
refine factorial_le ?_
exact le_pred_of_lt hb2p
lemma imo_2022_p5_7_2
(b p : β„•)
-- (hβ‚€ : 0 < b)
-- (hp : Nat.Prime p)
-- (hb2p : b < 2 * p)
(h₁ : b ! ≀ (2 * p - 1)!)
(gp : 2 ≀ p) :
b ! + p < p ^ (2 * p) := by
have gp1: (p - 1) + 1 = p := by
refine Nat.sub_add_cancel ?_
exact one_le_of_lt gp
let f: (β„• β†’ β„•) := (fun (x : β„•) => x + 1)
have hβ‚‚: (Finset.range (2 * p - 1)).prod f =
(Finset.range (p - 1)).prod (fun (x : β„•) => p^2 - (x+1)^2) * p := by
-- break the prod into three segments rang(p-1) + p + (p+1) until 2p-1
have gβ‚€: (Finset.range (2 * p - 1)).prod f = (Finset.range ((p - 1) + 1)).prod f
* (Finset.Ico ((p - 1) + 1) (2 * p - 1)).prod f := by
symm
refine Finset.prod_range_mul_prod_Ico f ?_
rw [gp1]
have ggβ‚€: p + 2 - 1 ≀ 2 * p - 1 := by
refine Nat.sub_le_sub_right ?_ 1
rw [add_comm]
exact add_le_mul (by norm_num) gp
exact le_of_lt ggβ‚€
have g₁: (Finset.range ((p - 1) + 1)).prod (fun (x : β„•) => x + 1) =
(Finset.range (p - 1)).prod (fun (x : β„•) => x + 1) * ((p - 1) + 1) := by
exact Finset.prod_range_succ _ (p - 1)
rw [g₁] at gβ‚€
nth_rewrite 2 [mul_comm] at gβ‚€
rw [← mul_assoc] at gβ‚€
rw [gp1] at gβ‚€ g₁
have gβ‚‚: (Finset.Ico ((p - 1) + 1) (2 * p - 1)).prod (fun (x : β„•) => x + 1)
= (Finset.range (p - 1)).prod (fun (x : β„•) => p + (x+1)) := by
rw [gp1]
exact imo_2022_p5_5 p
have g₃: (Finset.range (p - 1)).prod (fun (x : β„•) => x + 1)
= (Finset.range (p - 1)).prod (fun (x : β„•) => p - (x+1)) := by
exact imo_2022_p5_6 p gp
rw [gp1] at gβ‚‚
rw [gβ‚‚,g₃] at gβ‚€
have gβ‚„: (Finset.range (p - 1)).prod (fun (x : β„•) => p + (x+1))
* (Finset.range (p - 1)).prod (fun (x : β„•) => p - (x+1))
= (Finset.range (p - 1)).prod (fun (x : β„•) => (p + (x+1)) * (p - (x+1))) := by
symm
refine Finset.prod_mul_distrib
have gβ‚…: (fun (x : β„•) => p ^ 2 - (x+1) ^ 2) = (fun (x : β„•) => (p + (x+1)) * (p - (x+1))) := by
ext1 x
exact Nat.sq_sub_sq p (x + 1)
rw [gβ‚„,← gβ‚…] at gβ‚€
exact gβ‚€
have h₃: (Finset.range (p - 1)).prod (fun (x : β„•) => p^2 - (x+1)^2) * p
≀ (p^2)^(Finset.range (p - 1)).card * p := by
refine Nat.mul_le_mul_right ?_ ?_
refine Finset.prod_le_pow_card (Finset.range (p - 1)) ?_ (p^2) ?_
intros x _
exact (p ^ 2).sub_le ((x + 1) ^ 2)
simp at *
have hβ‚„: b.factorial + p ≀ (p ^ 2) ^ (p - 1) * p + p := by
refine add_le_add_right ?_ p
refine le_trans ?_ h₃
rw [← hβ‚‚]
rw [Finset.prod_range_add_one_eq_factorial]
exact h₁
have hβ‚…: b.factorial + p < (p ^ 2) ^ (p - 1) * p * p := by
refine lt_of_le_of_lt hβ‚„ ?_
rw [add_comm]
nth_rewrite 2 [mul_comm]
refine imo_2022_p5_4 p ((p ^ 2) ^ (p - 1) * p) gp ?_
refine lt_mul_left (by linarith) ?_
rw [← pow_mul]
refine Nat.one_lt_pow ?_ (Nat.lt_of_succ_le gp)
refine Nat.mul_ne_zero (by norm_num) ?_
exact Nat.sub_ne_zero_iff_lt.mpr gp
rw [mul_assoc _ p p, ← pow_two p] at hβ‚…
rw [← Nat.pow_succ, succ_eq_add_one, gp1] at hβ‚…
rw [Nat.pow_mul]
exact hβ‚…
lemma imo_2022_p5_7_3
(b p : β„•)
-- (hβ‚€ : 0 < b)
-- (hp : Nat.Prime p)
-- (hb2p : b < 2 * p)
(h₁ : b ! ≀ (2 * p - 1)!)
(gp : 2 ≀ p)
(gp1 : p - 1 + 1 = p)
(f : β„• β†’ β„•)
(hf : f = fun x => x + 1) :
b ! + p < p ^ (2 * p) := by
have hβ‚‚: (Finset.range (2 * p - 1)).prod f =
(Finset.range (p - 1)).prod (fun (x : β„•) => p^2 - (x+1)^2) * p := by
-- important
-- break the prod into three segments rang(p-1) + p + (p+1) until 2p-1
have gβ‚€: (Finset.range (2 * p - 1)).prod f = (Finset.range ((p - 1) + 1)).prod f
* (Finset.Ico ((p - 1) + 1) (2 * p - 1)).prod f := by
symm
refine Finset.prod_range_mul_prod_Ico f ?_
rw [gp1]
have ggβ‚€: p + 2 - 1 ≀ 2 * p - 1 := by
refine Nat.sub_le_sub_right ?_ 1
rw [add_comm]
exact add_le_mul (by norm_num) gp
exact le_of_lt ggβ‚€
have g₁: (Finset.range ((p - 1) + 1)).prod (fun (x : β„•) => x + 1) =
(Finset.range (p - 1)).prod (fun (x : β„•) => x + 1) * ((p - 1) + 1) := by
exact Finset.prod_range_succ _ (p - 1)
rw [hf, g₁] at gβ‚€
nth_rewrite 2 [mul_comm] at gβ‚€
rw [← mul_assoc] at gβ‚€
rw [gp1] at gβ‚€ g₁
have gβ‚‚: (Finset.Ico ((p - 1) + 1) (2 * p - 1)).prod (fun (x : β„•) => x + 1)
= (Finset.range (p - 1)).prod (fun (x : β„•) => p + (x+1)) := by
rw [gp1]
exact imo_2022_p5_5 p
have g₃: (Finset.range (p - 1)).prod (fun (x : β„•) => x + 1)
= (Finset.range (p - 1)).prod (fun (x : β„•) => p - (x+1)) := by
exact imo_2022_p5_6 p gp
rw [gp1] at gβ‚‚
rw [gβ‚‚,g₃] at gβ‚€
have gβ‚„: (Finset.range (p - 1)).prod (fun (x : β„•) => p + (x+1))
* (Finset.range (p - 1)).prod (fun (x : β„•) => p - (x+1))
= (Finset.range (p - 1)).prod (fun (x : β„•) => (p + (x+1)) * (p - (x+1))) := by
symm
refine Finset.prod_mul_distrib
have gβ‚…: (fun (x : β„•) => p ^ 2 - (x+1) ^ 2) = (fun (x : β„•) => (p + (x+1)) * (p - (x+1))) := by
ext1 x
exact Nat.sq_sub_sq p (x + 1)
rw [gβ‚„,← gβ‚…, ← hf] at gβ‚€
exact gβ‚€
have h₃: (Finset.range (p - 1)).prod (fun (x : β„•) => p^2 - (x+1)^2) * p
≀ (p^2)^(Finset.range (p - 1)).card * p := by
refine Nat.mul_le_mul_right ?_ ?_
refine Finset.prod_le_pow_card (Finset.range (p - 1)) ?_ (p^2) ?_
intros x _
exact (p ^ 2).sub_le ((x + 1) ^ 2)
simp at *
have hβ‚„: b.factorial + p ≀ (p ^ 2) ^ (p - 1) * p + p := by
refine add_le_add_right ?_ p
refine le_trans ?_ h₃
rw [← hβ‚‚, hf]
rw [Finset.prod_range_add_one_eq_factorial]
exact h₁
have hβ‚…: b.factorial + p < (p ^ 2) ^ (p - 1) * p * p := by
refine lt_of_le_of_lt hβ‚„ ?_
rw [add_comm]
nth_rewrite 2 [mul_comm]
refine imo_2022_p5_4 p ((p ^ 2) ^ (p - 1) * p) gp ?_
refine lt_mul_left (by linarith) ?_
rw [← pow_mul]
refine Nat.one_lt_pow ?_ (Nat.lt_of_succ_le gp)
refine Nat.mul_ne_zero (by norm_num) ?_
exact Nat.sub_ne_zero_iff_lt.mpr gp
rw [mul_assoc _ p p, ← pow_two p] at hβ‚…
rw [← Nat.pow_succ, succ_eq_add_one, gp1] at hβ‚…
rw [Nat.pow_mul]
exact hβ‚…
lemma imo_2022_p5_7_4
-- (b : β„•)
(p : β„•)
-- (hβ‚€ : 0 < b)
-- (hp : Nat.Prime p)
-- (hb2p : b < 2 * p)
-- (h₁ : b ! ≀ (2 * p - 1)!)
(gp : 2 ≀ p)
(gp1 : p - 1 + 1 = p)
(f : β„• β†’ β„•)
(hf : f = fun x => x + 1) :
Finset.prod (Finset.range (2 * p - 1)) f =
(Finset.prod (Finset.range (p - 1)) fun x => p ^ 2 - (x + 1) ^ 2) * p := by
have gβ‚€: (Finset.range (2 * p - 1)).prod f = (Finset.range ((p - 1) + 1)).prod f
* (Finset.Ico ((p - 1) + 1) (2 * p - 1)).prod f := by
symm
refine Finset.prod_range_mul_prod_Ico f ?_
rw [gp1]
have ggβ‚€: p + 2 - 1 ≀ 2 * p - 1 := by
refine Nat.sub_le_sub_right ?_ 1
rw [add_comm]
exact add_le_mul (by norm_num) gp
exact le_of_lt ggβ‚€
have g₁: (Finset.range ((p - 1) + 1)).prod (fun (x : β„•) => x + 1) =
(Finset.range (p - 1)).prod (fun (x : β„•) => x + 1) * ((p - 1) + 1) := by
exact Finset.prod_range_succ _ (p - 1)
rw [hf, g₁] at gβ‚€
nth_rewrite 2 [mul_comm] at gβ‚€
rw [← mul_assoc] at gβ‚€
rw [gp1] at gβ‚€ g₁
have gβ‚‚: (Finset.Ico ((p - 1) + 1) (2 * p - 1)).prod (fun (x : β„•) => x + 1)
= (Finset.range (p - 1)).prod (fun (x : β„•) => p + (x+1)) := by
rw [gp1]
exact imo_2022_p5_5 p
have g₃: (Finset.range (p - 1)).prod (fun (x : β„•) => x + 1)
= (Finset.range (p - 1)).prod (fun (x : β„•) => p - (x+1)) := by
exact imo_2022_p5_6 p gp
rw [gp1] at gβ‚‚
rw [gβ‚‚,g₃] at gβ‚€
have gβ‚„: (Finset.range (p - 1)).prod (fun (x : β„•) => p + (x+1))
* (Finset.range (p - 1)).prod (fun (x : β„•) => p - (x+1))
= (Finset.range (p - 1)).prod (fun (x : β„•) => (p + (x+1)) * (p - (x+1))) := by
symm
refine Finset.prod_mul_distrib
have gβ‚…: (fun (x : β„•) => p ^ 2 - (x+1) ^ 2) = (fun (x : β„•) => (p + (x+1)) * (p - (x+1))) := by
ext1 x
exact Nat.sq_sub_sq p (x + 1)
rw [gβ‚„,← gβ‚…, ← hf] at gβ‚€
exact gβ‚€
lemma imo_2022_p5_7_5
-- (b : β„•)
(p : β„•)
-- (hβ‚€ : 0 < b)
-- (hp : Nat.Prime p)
-- (hb2p : b < 2 * p)
-- (h₁ : b ! ≀ (2 * p - 1)!)
(gp : 2 ≀ p)
(gp1 : p - 1 + 1 = p)
(f : β„• β†’ β„•) :
-- (hf : f = fun x => x + 1) :
Finset.prod (Finset.range (2 * p - 1)) f =
Finset.prod (Finset.range (p - 1 + 1)) f * Finset.prod (Finset.Ico (p - 1 + 1) (2 * p - 1)) f := by
symm
refine Finset.prod_range_mul_prod_Ico f ?_
rw [gp1]
have ggβ‚€: p + 2 - 1 ≀ 2 * p - 1 := by
refine Nat.sub_le_sub_right ?_ 1
rw [add_comm]
exact add_le_mul (by norm_num) gp
exact le_of_lt ggβ‚€
lemma imo_2022_p5_7_6
-- (b : β„•)
(p : β„•)
-- (hβ‚€ : 0 < b)
-- (hp : Nat.Prime p)
-- (hb2p : b < 2 * p)
-- (h₁ : b ! ≀ (2 * p - 1)!)
(gp : 2 ≀ p)
(gp1 : p - 1 + 1 = p) :
-- (f : β„• β†’ β„•)
-- (hf : f = fun x => x + 1) :
p - 1 + 1 ≀ 2 * p - 1 := by
have hβ‚‚: p - 1 + 1 < p + 2 - 1 := by
omega
refine le_trans (le_of_lt hβ‚‚) ?_
refine Nat.sub_le_sub_right ?_ 1
rw [add_comm]
exact add_le_mul (by norm_num) gp
lemma imo_2022_p5_7_7
-- (b : β„•)
(p : β„•)
-- (hβ‚€ : 0 < b)
-- (hp : Nat.Prime p)
-- (hb2p : b < 2 * p)
-- (h₁ : b ! ≀ (2 * p - 1)!)
(gp : 2 ≀ p) :
-- (gp1 : p - 1 + 1 = p)
-- (f : β„• β†’ β„•)
-- (hf : f = fun x => x + 1) :
p + 2 - 1 ≀ 2 * p - 1 := by
refine Nat.sub_le_sub_right ?_ 1
rw [add_comm]
exact add_le_mul (by norm_num) gp
lemma imo_2022_p5_7_8
-- (b : β„•)
(p : β„•)
-- (hβ‚€ : 0 < b)
-- (hp : Nat.Prime p)
-- (hb2p : b < 2 * p)
-- (h₁ : b ! ≀ (2 * p - 1)!)
(gp : 2 ≀ p) :
-- (gp1 : p - 1 + 1 = p)
-- (f : β„• β†’ β„•)
-- (hf : f = fun x => x + 1) :
p + 2 ≀ 2 * p := by
rw [add_comm]
exact add_le_mul (by norm_num) gp
lemma imo_2022_p5_7_9
-- (b : β„•)
(p : β„•)
-- (hβ‚€ : 0 < b)
-- (hp : Nat.Prime p)
-- (hb2p : b < 2 * p)
-- (h₁ : b ! ≀ (2 * p - 1)!)
(gp : 2 ≀ p)
(gp1 : p - 1 + 1 = p)
(f : β„• β†’ β„•)
(hf : f = fun x => x + 1)
(gβ‚€ : Finset.prod (Finset.range (2 * p - 1)) f =
Finset.prod (Finset.range (p - 1 + 1)) f * Finset.prod (Finset.Ico (p - 1 + 1) (2 * p - 1)) f) :
Finset.prod (Finset.range (2 * p - 1)) f =
(Finset.prod (Finset.range (p - 1)) fun x => p ^ 2 - (x + 1) ^ 2) * p := by
have g₁: (Finset.range ((p - 1) + 1)).prod (fun (x : β„•) => x + 1) =
(Finset.range (p - 1)).prod (fun (x : β„•) => x + 1) * ((p - 1) + 1) := by
exact Finset.prod_range_succ _ (p - 1)
rw [hf, g₁] at gβ‚€
nth_rewrite 2 [mul_comm] at gβ‚€
rw [← mul_assoc] at gβ‚€
rw [gp1] at gβ‚€ g₁
have gβ‚‚: (Finset.Ico ((p - 1) + 1) (2 * p - 1)).prod (fun (x : β„•) => x + 1)
= (Finset.range (p - 1)).prod (fun (x : β„•) => p + (x+1)) := by
rw [gp1]
exact imo_2022_p5_5 p
have g₃: (Finset.range (p - 1)).prod (fun (x : β„•) => x + 1)
= (Finset.range (p - 1)).prod (fun (x : β„•) => p - (x+1)) := by
exact imo_2022_p5_6 p gp
rw [gp1] at gβ‚‚
rw [gβ‚‚,g₃] at gβ‚€
have gβ‚„: (Finset.range (p - 1)).prod (fun (x : β„•) => p + (x+1))
* (Finset.range (p - 1)).prod (fun (x : β„•) => p - (x+1))
= (Finset.range (p - 1)).prod (fun (x : β„•) => (p + (x+1)) * (p - (x+1))) := by
symm
refine Finset.prod_mul_distrib
have gβ‚…: (fun (x : β„•) => p ^ 2 - (x+1) ^ 2) = (fun (x : β„•) => (p + (x+1)) * (p - (x+1))) := by
ext1 x
exact Nat.sq_sub_sq p (x + 1)
rw [gβ‚„,← gβ‚…, ← hf] at gβ‚€
exact gβ‚€
lemma imo_2022_p5_7_10
-- (b : β„•)
(p : β„•)
-- (hβ‚€ : 0 < b)
-- (hp : Nat.Prime p)
-- (hb2p : b < 2 * p)
-- (h₁ : b ! ≀ (2 * p - 1)!)
(gp : 2 ≀ p)
(gp1 : p - 1 + 1 = p)
(f : β„• β†’ β„•)
(hf : f = fun x => x + 1)
(gβ‚€ : Finset.prod (Finset.range (2 * p - 1)) f =
Finset.prod (Finset.range (p - 1 + 1)) f * Finset.prod (Finset.Ico (p - 1 + 1) (2 * p - 1)) f)
(g₁ : (Finset.prod (Finset.range (p - 1 + 1)) fun x => x + 1) =
(Finset.prod (Finset.range (p - 1)) fun x => x + 1) * (p - 1 + 1)) :
Finset.prod (Finset.range (2 * p - 1)) f =
(Finset.prod (Finset.range (p - 1)) fun x => p ^ 2 - (x + 1) ^ 2) * p := by
rw [hf, g₁] at gβ‚€
nth_rewrite 2 [mul_comm] at gβ‚€
rw [← mul_assoc] at gβ‚€
rw [gp1] at gβ‚€ g₁
have gβ‚‚: (Finset.Ico ((p - 1) + 1) (2 * p - 1)).prod (fun (x : β„•) => x + 1)
= (Finset.range (p - 1)).prod (fun (x : β„•) => p + (x+1)) := by
rw [gp1]
exact imo_2022_p5_5 p
have g₃: (Finset.range (p - 1)).prod (fun (x : β„•) => x + 1)
= (Finset.range (p - 1)).prod (fun (x : β„•) => p - (x+1)) := by
exact imo_2022_p5_6 p gp
rw [gp1] at gβ‚‚
rw [gβ‚‚,g₃] at gβ‚€
have gβ‚„: (Finset.range (p - 1)).prod (fun (x : β„•) => p + (x+1))
* (Finset.range (p - 1)).prod (fun (x : β„•) => p - (x+1))
= (Finset.range (p - 1)).prod (fun (x : β„•) => (p + (x+1)) * (p - (x+1))) := by
symm
refine Finset.prod_mul_distrib
have gβ‚…: (fun (x : β„•) => p ^ 2 - (x+1) ^ 2) = (fun (x : β„•) => (p + (x+1)) * (p - (x+1))) := by
ext1 x
exact Nat.sq_sub_sq p (x + 1)
rw [gβ‚„,← gβ‚…, ← hf] at gβ‚€
exact gβ‚€
lemma imo_2022_p5_7_11
-- (b : β„•)
(p : β„•)
-- (hβ‚€ : 0 < b)
-- (hp : Nat.Prime p)
-- (hb2p : b < 2 * p)
-- (h₁ : b ! ≀ (2 * p - 1)!)
(gp : 2 ≀ p)
(gp1 : p - 1 + 1 = p)
(f : β„• β†’ β„•)
(hf : f = fun x => x + 1)
(gβ‚€ : Finset.prod (Finset.range (2 * p - 1)) f =
(Finset.prod (Finset.Ico p (2 * p - 1)) f * Finset.prod (Finset.range (p - 1)) fun x => x + 1) * p)
(g₁ : (Finset.prod (Finset.range p) fun x => x + 1) =
(Finset.prod (Finset.range (p - 1)) fun x => x + 1) * p) :
Finset.prod (Finset.range (2 * p - 1)) f =
(Finset.prod (Finset.range (p - 1)) fun x => p ^ 2 - (x + 1) ^ 2) * p := by
have gβ‚‚: (Finset.Ico ((p - 1) + 1) (2 * p - 1)).prod (fun (x : β„•) => x + 1)
= (Finset.range (p - 1)).prod (fun (x : β„•) => p + (x+1)) := by
rw [gp1]
exact imo_2022_p5_5 p
have g₃: (Finset.range (p - 1)).prod (fun (x : β„•) => x + 1)
= (Finset.range (p - 1)).prod (fun (x : β„•) => p - (x+1)) := by
exact imo_2022_p5_6 p gp
rw [gp1] at gβ‚‚
rw [hf, gβ‚‚, g₃] at gβ‚€
have gβ‚„: (Finset.range (p - 1)).prod (fun (x : β„•) => p + (x+1))
* (Finset.range (p - 1)).prod (fun (x : β„•) => p - (x+1))
= (Finset.range (p - 1)).prod (fun (x : β„•) => (p + (x+1)) * (p - (x+1))) := by
symm
refine Finset.prod_mul_distrib
have gβ‚…: (fun (x : β„•) => p ^ 2 - (x+1) ^ 2) = (fun (x : β„•) => (p + (x+1)) * (p - (x+1))) := by
ext1 x
exact Nat.sq_sub_sq p (x + 1)
rw [gβ‚„,← gβ‚…, ← hf] at gβ‚€
exact gβ‚€
lemma imo_2022_p5_7_12
-- (b : β„•)
(p : β„•)
-- (hβ‚€ : 0 < b)
-- (hp : Nat.Prime p)
-- (hb2p : b < 2 * p)
-- (h₁ : b ! ≀ (2 * p - 1)!)
-- (gp : 2 ≀ p)
(gp1 : p - 1 + 1 = p)
(f : β„• β†’ β„•)
(hf : f = fun x => x + 1)
(gβ‚€ : Finset.prod (Finset.range (2 * p - 1)) f =
Finset.prod (Finset.range (p - 1 + 1)) f * Finset.prod (Finset.Ico (p - 1 + 1) (2 * p - 1)) f)
(g₁ : (Finset.prod (Finset.range (p - 1 + 1)) fun x => x + 1) =
(Finset.prod (Finset.range (p - 1)) fun x => x + 1) * (p - 1 + 1)) :
Finset.prod (Finset.range (2 * p - 1)) f =
(Finset.prod (Finset.Ico p (2 * p - 1)) f *
Finset.prod (Finset.range (p - 1)) fun x => x + 1) * p := by
rw [hf, g₁] at gβ‚€
nth_rewrite 2 [mul_comm] at gβ‚€
rw [← mul_assoc] at gβ‚€
rw [gp1] at gβ‚€ g₁
rw [hf, gβ‚€]
lemma imo_2022_p5_7_13
-- (b : β„•)
(p : β„•)
-- (hβ‚€ : 0 < b)
-- (hp : Nat.Prime p)
-- (hb2p : b < 2 * p)
-- (h₁ : b ! ≀ (2 * p - 1)!)
-- (gp : 2 ≀ p)
(gp1 : p - 1 + 1 = p)
(f : β„• β†’ β„•)
(hf : f = fun x => x + 1)
(gβ‚€ : Finset.prod (Finset.range (2 * p - 1)) f =
(Finset.prod (Finset.Ico p (2 * p - 1)) f * Finset.prod (Finset.range (p - 1)) fun x => x + 1) * p)
(g₁ : (Finset.prod (Finset.range p) fun x => x + 1) = (Finset.prod (Finset.range (p - 1)) fun x => x + 1) * p)
(gβ‚‚ : (Finset.Ico ((p - 1) + 1) (2 * p - 1)).prod (fun (x : β„•) => x + 1)
= (Finset.range (p - 1)).prod (fun (x : β„•) => p + (x+1)))
(g₃ : (Finset.prod (Finset.range (p - 1)) fun x => x + 1) = Finset.prod (Finset.range (p - 1)) fun x => p - (x + 1)) :
Finset.prod (Finset.range (2 * p - 1)) f =
(Finset.prod (Finset.range (p - 1)) fun x => p ^ 2 - (x + 1) ^ 2) * p := by
rw [gp1] at gβ‚‚
rw [hf, gβ‚‚, g₃] at gβ‚€
have gβ‚„: (Finset.range (p - 1)).prod (fun (x : β„•) => p + (x+1))
* (Finset.range (p - 1)).prod (fun (x : β„•) => p - (x+1))
= (Finset.range (p - 1)).prod (fun (x : β„•) => (p + (x+1)) * (p - (x+1))) := by
symm
refine Finset.prod_mul_distrib
have gβ‚…: (fun (x : β„•) => p ^ 2 - (x+1) ^ 2) = (fun (x : β„•) => (p + (x+1)) * (p - (x+1))) := by
ext1 x
exact Nat.sq_sub_sq p (x + 1)
rw [gβ‚„,← gβ‚…, ← hf] at gβ‚€
exact gβ‚€
lemma imo_2022_p5_7_14
-- (b : β„•)
(p : β„•)
-- (hβ‚€ : 0 < b)
-- (hp : Nat.Prime p)
-- (hb2p : b < 2 * p)
-- (h₁ : b ! ≀ (2 * p - 1)!)
-- (gp : 2 ≀ p)
-- (gp1 : p - 1 + 1 = p)
(f : β„• β†’ β„•)
-- (hf : f = fun x => x + 1)
(gβ‚€ : Finset.prod (Finset.range (2 * p - 1)) f =
((Finset.prod (Finset.range (p - 1)) fun x => p + (x + 1)) *
Finset.prod (Finset.range (p - 1)) fun x => p - (x + 1)) * p)
(g₁ : (Finset.prod (Finset.range p) fun x => x + 1) = (Finset.prod (Finset.range (p - 1)) fun x => x + 1) * p)
(gβ‚‚ : (Finset.prod (Finset.Ico p (2 * p - 1)) fun x => x + 1) = Finset.prod (Finset.range (p - 1)) fun x => p + (x + 1))
(g₃ : (Finset.prod (Finset.range (p - 1)) fun x => x + 1) = Finset.prod (Finset.range (p - 1)) fun x => p - (x + 1))
(gβ‚„ : ((Finset.prod (Finset.range (p - 1)) fun x => p + (x + 1)) * Finset.prod (Finset.range (p - 1)) fun x => p - (x + 1)) =
Finset.prod (Finset.range (p - 1)) fun x => (p + (x + 1)) * (p - (x + 1))) :
Finset.prod (Finset.range (2 * p - 1)) f =
(Finset.prod (Finset.range (p - 1)) fun x => p ^ 2 - (x + 1) ^ 2) * p := by
have gβ‚…: (fun (x : β„•) => p ^ 2 - (x+1) ^ 2) = (fun (x : β„•) => (p + (x+1)) * (p - (x+1))) := by
ext1 x
exact Nat.sq_sub_sq p (x + 1)
rw [gβ‚„,← gβ‚…] at gβ‚€
exact gβ‚€
lemma imo_2022_p5_7_15
-- (b : β„•)
(p : β„•) :
-- (hβ‚€ : 0 < b)
-- (hp : Nat.Prime p)
-- (hb2p : b < 2 * p)
-- (h₁ : b ! ≀ (2 * p - 1)!)
-- (gp : 2 ≀ p)
-- (gp1 : p - 1 + 1 = p)
-- (f : β„• β†’ β„•)
-- (hf : f = fun x => x + 1)
-- (gβ‚€ : Finset.prod (Finset.range (2 * p - 1)) f =
-- ((Finset.prod (Finset.range (p - 1)) fun x => p + (x + 1)) *
-- Finset.prod (Finset.range (p - 1)) fun x => p - (x + 1)) * p)
-- (g₁ : (Finset.prod (Finset.range p) fun x => x + 1) = (Finset.prod (Finset.range (p - 1)) fun x => x + 1) * p)
-- (gβ‚‚ : (Finset.prod (Finset.Ico p (2 * p - 1)) fun x => x + 1) = Finset.prod (Finset.range (p - 1)) fun x => p + (x + 1))
-- (g₃ : (Finset.prod (Finset.range (p - 1)) fun x => x + 1) = Finset.prod (Finset.range (p - 1)) fun x => p - (x + 1))
-- (gβ‚„ : ((Finset.prod (Finset.range (p - 1)) fun x => p + (x + 1)) * Finset.prod (Finset.range (p - 1)) fun x => p - (x + 1)) =
-- Finset.prod (Finset.range (p - 1)) fun x => (p + (x + 1)) * (p - (x + 1))) :
(fun x => p ^ 2 - (x + 1) ^ 2) = fun x => (p + (x + 1)) * (p - (x + 1)) := by
ext1 x
exact Nat.sq_sub_sq p (x + 1)
lemma imo_2022_p5_7_16
-- (b : β„•)
(p : β„•)
-- (hβ‚€ : 0 < b)
-- (hp : Nat.Prime p)
-- (hb2p : b < 2 * p)
-- (h₁ : b ! ≀ (2 * p - 1)!)
-- (gp : 2 ≀ p)
-- (gp1 : p - 1 + 1 = p)
(f : β„• β†’ β„•)
-- (hf : f = fun x => x + 1)
(gβ‚€ : Finset.prod (Finset.range (2 * p - 1)) f =
((Finset.prod (Finset.range (p - 1)) fun x => p + (x + 1)) *
Finset.prod (Finset.range (p - 1)) fun x => p - (x + 1)) * p)
(g₁ : (Finset.prod (Finset.range p) fun x => x + 1) = (Finset.prod (Finset.range (p - 1)) fun x => x + 1) * p)
(gβ‚‚ : (Finset.prod (Finset.Ico p (2 * p - 1)) fun x => x + 1) = Finset.prod (Finset.range (p - 1)) fun x => p + (x + 1))
(g₃ : (Finset.prod (Finset.range (p - 1)) fun x => x + 1) = Finset.prod (Finset.range (p - 1)) fun x => p - (x + 1))
(gβ‚„ : ((Finset.prod (Finset.range (p - 1)) fun x => p + (x + 1)) * Finset.prod (Finset.range (p - 1)) fun x => p - (x + 1)) =
Finset.prod (Finset.range (p - 1)) fun x => (p + (x + 1)) * (p - (x + 1)))
(gβ‚… : (fun x => p ^ 2 - (x + 1) ^ 2) = fun x => (p + (x + 1)) * (p - (x + 1))) :
Finset.prod (Finset.range (2 * p - 1)) f =
(Finset.prod (Finset.range (p - 1)) fun x => p ^ 2 - (x + 1) ^ 2) * p := by
rw [gβ‚„,← gβ‚…] at gβ‚€
exact gβ‚€
lemma imo_2022_p5_7_17
(b p : β„•)
-- (hβ‚€ : 0 < b)
-- (hp : Nat.Prime p)
-- (hb2p : b < 2 * p)
(h₁ : b ! ≀ (2 * p - 1)!)
(gp : 2 ≀ p)
(gp1 : p - 1 + 1 = p)
(f : β„• β†’ β„•)
(hf : f = fun x => x + 1)
(hβ‚‚ : Finset.prod (Finset.range (2 * p - 1)) f = (Finset.prod (Finset.range (p - 1)) fun x => p ^ 2 - (x + 1) ^ 2) * p) :
b ! + p < p ^ (2 * p) := by
have h₃: (Finset.range (p - 1)).prod (fun (x : β„•) => p^2 - (x+1)^2) * p
≀ (p^2)^(Finset.range (p - 1)).card * p := by
refine Nat.mul_le_mul_right ?_ ?_
refine Finset.prod_le_pow_card (Finset.range (p - 1)) ?_ (p^2) ?_
intros x _
exact (p ^ 2).sub_le ((x + 1) ^ 2)
simp at *
have hβ‚„: b.factorial + p ≀ (p ^ 2) ^ (p - 1) * p + p := by
refine add_le_add_right ?_ p
refine le_trans ?_ h₃
rw [← hβ‚‚, hf]
rw [Finset.prod_range_add_one_eq_factorial]
exact h₁
have hβ‚…: b.factorial + p < (p ^ 2) ^ (p - 1) * p * p := by
refine lt_of_le_of_lt hβ‚„ ?_
rw [add_comm]
nth_rewrite 2 [mul_comm]
refine imo_2022_p5_4 p ((p ^ 2) ^ (p - 1) * p) gp ?_
refine lt_mul_left (by linarith) ?_
rw [← pow_mul]
refine Nat.one_lt_pow ?_ (Nat.lt_of_succ_le gp)
refine Nat.mul_ne_zero (by norm_num) ?_
exact Nat.sub_ne_zero_iff_lt.mpr gp
rw [mul_assoc _ p p, ← pow_two p] at hβ‚…
rw [← Nat.pow_succ, succ_eq_add_one, gp1] at hβ‚…
rw [Nat.pow_mul]
exact hβ‚…
lemma imo_2022_p5_7_18
-- (b : β„•)
(p : β„•) :
-- (hβ‚€ : 0 < b)
-- (hp : Nat.Prime p)
-- (hb2p : b < 2 * p)
-- (h₁ : b ! ≀ (2 * p - 1)!)
-- (gp : 2 ≀ p)
-- (gp1 : p - 1 + 1 = p)
-- (f : β„• β†’ β„•)
-- (hf : f = fun x => x + 1)
-- (hβ‚‚ : Finset.prod (Finset.range (2 * p - 1)) f = (Finset.prod (Finset.range (p - 1)) fun x => p ^ 2 - (x + 1) ^ 2) * p) :
(Finset.prod (Finset.range (p - 1)) fun x => p ^ 2 - (x + 1) ^ 2) * p
≀ (p ^ 2) ^ (Finset.range (p - 1)).card * p := by
refine Nat.mul_le_mul_right ?_ ?_
refine Finset.prod_le_pow_card (Finset.range (p - 1)) ?_ (p^2) ?_
intros x _
exact (p ^ 2).sub_le ((x + 1) ^ 2)
lemma imo_2022_p5_7_19
-- (b : β„•)
(p : β„•) :
-- (hβ‚€ : 0 < b)
-- (hp : Nat.Prime p)
-- (hb2p : b < 2 * p)
-- (h₁ : b ! ≀ (2 * p - 1)!)
-- (gp : 2 ≀ p)
-- (gp1 : p - 1 + 1 = p)
-- (f : β„• β†’ β„•)
-- (hf : f = fun x => x + 1)
-- (hβ‚‚ : Finset.prod (Finset.range (2 * p - 1)) f = (Finset.prod (Finset.range (p - 1)) fun x => p ^ 2 - (x + 1) ^ 2) * p) :
(Finset.prod (Finset.range (p - 1)) fun x => (p ^ 2 - (x + 1) ^ 2)) ≀
(p ^ 2) ^ (Finset.range (p - 1)).card := by
refine Finset.prod_le_pow_card (Finset.range (p - 1)) ?_ (p^2) ?_
intros x _
exact (p ^ 2).sub_le ((x + 1) ^ 2)
lemma imo_2022_p5_7_20
-- (b : β„•)
(p : β„•) :
-- (hβ‚€ : 0 < b)
-- (hp : Nat.Prime p)
-- (hb2p : b < 2 * p)
-- (h₁ : b ! ≀ (2 * p - 1)!)
-- (gp : 2 ≀ p)
-- (gp1 : p - 1 + 1 = p)
-- (f : β„• β†’ β„•)
-- (hf : f = fun x => x + 1)
-- (hβ‚‚ : Finset.prod (Finset.range (2 * p - 1)) f = (Finset.prod (Finset.range (p - 1)) fun x => p ^ 2 - (x + 1) ^ 2) * p) :
βˆ€ x ∈ Finset.range (p - 1), p ^ 2 - (x + 1) ^ 2 ≀ p ^ 2 := by
intros x _
exact (p ^ 2).sub_le ((x + 1) ^ 2)
lemma imo_2022_p5_7_21
(b p : β„•)
-- (hβ‚€ : 0 < b)
-- (hp : Nat.Prime p)
-- (hb2p : b < 2 * p)
(h₁ : b ! ≀ (2 * p - 1)!)
(gp : 2 ≀ p)
(gp1 : p - 1 + 1 = p)
(f : β„• β†’ β„•)
(hf : f = fun x => x + 1)
(hβ‚‚ : Finset.prod (Finset.range (2 * p - 1)) f = (Finset.prod (Finset.range (p - 1)) fun x => p ^ 2 - (x + 1) ^ 2) * p)
(h₃ : (Finset.prod (Finset.range (p - 1)) fun x => p ^ 2 - (x + 1) ^ 2) * p ≀ (p ^ 2) ^ (Finset.range (p - 1)).card * p) :
b ! + p < p ^ (2 * p) := by
simp at *
have hβ‚„: b.factorial + p ≀ (p ^ 2) ^ (p - 1) * p + p := by
refine add_le_add_right ?_ p
refine le_trans ?_ h₃
rw [← hβ‚‚, hf]
rw [Finset.prod_range_add_one_eq_factorial]
exact h₁
have hβ‚…: b.factorial + p < (p ^ 2) ^ (p - 1) * p * p := by
refine lt_of_le_of_lt hβ‚„ ?_
rw [add_comm]
nth_rewrite 2 [mul_comm]
refine imo_2022_p5_4 p ((p ^ 2) ^ (p - 1) * p) gp ?_
refine lt_mul_left (by linarith) ?_
rw [← pow_mul]
refine Nat.one_lt_pow ?_ (Nat.lt_of_succ_le gp)
refine Nat.mul_ne_zero (by norm_num) ?_
exact Nat.sub_ne_zero_iff_lt.mpr gp
rw [mul_assoc _ p p, ← pow_two p] at hβ‚…
rw [← Nat.pow_succ, succ_eq_add_one, gp1] at hβ‚…
rw [Nat.pow_mul]
exact hβ‚…
lemma imo_2022_p5_7_22
(b p : β„•)
-- (hβ‚€ : 0 < b)
-- (hp : Nat.Prime p)
-- (hb2p : b < 2 * p)
(h₁ : b ! ≀ (2 * p - 1)!)
-- (gp : 2 ≀ p)
-- (gp1 : p - 1 + 1 = p)
(f : β„• β†’ β„•)
(hf : f = fun x => x + 1)
(hβ‚‚ : Finset.prod (Finset.range (2 * p - 1)) f = (Finset.prod (Finset.range (p - 1)) fun x => p ^ 2 - (x + 1) ^ 2) * p)
(h₃ : (Finset.prod (Finset.range (p - 1)) fun x => p ^ 2 - (x + 1) ^ 2) * p ≀ (p ^ 2) ^ (p - 1) * p) :
b ! + p ≀ (p ^ 2) ^ (p - 1) * p + p := by
refine add_le_add_right ?_ p
refine le_trans ?_ h₃
rw [← hβ‚‚, hf]
rw [Finset.prod_range_add_one_eq_factorial]
exact h₁
lemma imo_2022_p5_7_23
(b p : β„•)
-- (hβ‚€ : 0 < b)
-- (hp : Nat.Prime p)
-- (hb2p : b < 2 * p)
(h₁ : b ! ≀ (2 * p - 1)!)
-- (gp : 2 ≀ p)
-- (gp1 : p - 1 + 1 = p)
(f : β„• β†’ β„•)
(hf : f = fun x => x + 1)
(hβ‚‚ : Finset.prod (Finset.range (2 * p - 1)) f = (Finset.prod (Finset.range (p - 1)) fun x => p ^ 2 - (x + 1) ^ 2) * p)
(h₃ : (Finset.prod (Finset.range (p - 1)) fun x => p ^ 2 - (x + 1) ^ 2) * p ≀ (p ^ 2) ^ (p - 1) * p) :
b ! ≀ (p ^ 2) ^ (p - 1) * p := by
refine le_trans ?_ h₃
rw [← hβ‚‚, hf]
rw [Finset.prod_range_add_one_eq_factorial]
exact h₁
lemma imo_2022_p5_7_24
(b p : β„•)
-- (hβ‚€ : 0 < b)
-- (hp : Nat.Prime p)
-- (hb2p : b < 2 * p)
(h₁ : b ! ≀ (2 * p - 1)!)
-- (gp : 2 ≀ p)
-- (gp1 : p - 1 + 1 = p)
(f : β„• β†’ β„•)
(hf : f = fun x => x + 1) :
-- (hβ‚‚ : Finset.prod (Finset.range (2 * p - 1)) f = (Finset.prod (Finset.range (p - 1)) fun x => p ^ 2 - (x + 1) ^ 2) * p)
-- (h₃ : (Finset.prod (Finset.range (p - 1)) fun x => p ^ 2 - (x + 1) ^ 2) * p ≀ (p ^ 2) ^ (p - 1) * p) :
b ! ≀ Finset.prod (Finset.range (2 * p - 1)) f := by
rw [hf]
rw [Finset.prod_range_add_one_eq_factorial]
exact h₁
lemma imo_2022_p5_7_25
(b p : β„•)
-- (hβ‚€ : 0 < b)
-- (hp : Nat.Prime p)
-- (hb2p : b < 2 * p)
-- (h₁ : b ! ≀ (2 * p - 1)!)
(gp : 2 ≀ p)
(gp1 : p - 1 + 1 = p)
-- (f : β„• β†’ β„•)
-- (hf : f = fun x => x + 1)
-- (hβ‚‚ : Finset.prod (Finset.range (2 * p - 1)) f = (Finset.prod (Finset.range (p - 1)) fun x => p ^ 2 - (x + 1) ^ 2) * p)
-- (h₃ : (Finset.prod (Finset.range (p - 1)) fun x => p ^ 2 - (x + 1) ^ 2) * p ≀ (p ^ 2) ^ (p - 1) * p)
(hβ‚„ : b ! + p ≀ (p ^ 2) ^ (p - 1) * p + p) :
b ! + p < p ^ (2 * p) := by
have hβ‚…: b.factorial + p < (p ^ 2) ^ (p - 1) * p * p := by
refine lt_of_le_of_lt hβ‚„ ?_
rw [add_comm]
nth_rewrite 2 [mul_comm]
refine imo_2022_p5_4 p ((p ^ 2) ^ (p - 1) * p) gp ?_
refine lt_mul_left (by linarith) ?_
rw [← pow_mul]
refine Nat.one_lt_pow ?_ (Nat.lt_of_succ_le gp)
refine Nat.mul_ne_zero (by norm_num) ?_
exact Nat.sub_ne_zero_iff_lt.mpr gp
rw [mul_assoc _ p p, ← pow_two p] at hβ‚…
rw [← Nat.pow_succ, succ_eq_add_one, gp1] at hβ‚…
rw [Nat.pow_mul]
exact hβ‚…
lemma imo_2022_p5_7_26
(b p : β„•)
-- (hβ‚€ : 0 < b)
-- (hp : Nat.Prime p)
-- (hb2p : b < 2 * p)
-- (h₁ : b ! ≀ (2 * p - 1)!)
(gp : 2 ≀ p)
-- (gp1 : p - 1 + 1 = p)
-- (f : β„• β†’ β„•)
-- (hf : f = fun x => x + 1)
-- (hβ‚‚ : Finset.prod (Finset.range (2 * p - 1)) f = (Finset.prod (Finset.range (p - 1)) fun x => p ^ 2 - (x + 1) ^ 2) * p)
-- (h₃ : (Finset.prod (Finset.range (p - 1)) fun x => p ^ 2 - (x + 1) ^ 2) * p ≀ (p ^ 2) ^ (p - 1) * p)
(hβ‚„ : b ! + p ≀ (p ^ 2) ^ (p - 1) * p + p) :
b ! + p < (p ^ 2) ^ (p - 1) * p * p := by
refine lt_of_le_of_lt hβ‚„ ?_
rw [add_comm]
nth_rewrite 2 [mul_comm]
refine imo_2022_p5_4 p ((p ^ 2) ^ (p - 1) * p) gp ?_
refine lt_mul_left (by linarith) ?_
rw [← pow_mul]
refine Nat.one_lt_pow ?_ (Nat.lt_of_succ_le gp)
refine Nat.mul_ne_zero (by norm_num) ?_
exact Nat.sub_ne_zero_iff_lt.mpr gp
lemma imo_2022_p5_7_27
(p : β„•)
-- (hβ‚€ : 0 < b)
-- (hp : Nat.Prime p)
-- (hb2p : b < 2 * p)
-- (h₁ : b ! ≀ (2 * p - 1)!)
(gp : 2 ≀ p) :
-- (gp1 : p - 1 + 1 = p)
-- (f : β„• β†’ β„•)
-- (hf : f = fun x => x + 1)
-- (hβ‚‚ : Finset.prod (Finset.range (2 * p - 1)) f = (Finset.prod (Finset.range (p - 1)) fun x => p ^ 2 - (x + 1) ^ 2) * p)
-- (h₃ : (Finset.prod (Finset.range (p - 1)) fun x => p ^ 2 - (x + 1) ^ 2) * p ≀ (p ^ 2) ^ (p - 1) * p)
-- (hβ‚„ : b ! + p ≀ (p ^ 2) ^ (p - 1) * p + p) :
(p ^ 2) ^ (p - 1) * p + p < (p ^ 2) ^ (p - 1) * p * p := by
rw [add_comm]
nth_rewrite 2 [mul_comm]
refine imo_2022_p5_4 p ((p ^ 2) ^ (p - 1) * p) gp ?_
refine lt_mul_left (by linarith) ?_
rw [← pow_mul]
refine Nat.one_lt_pow ?_ (Nat.lt_of_succ_le gp)
refine Nat.mul_ne_zero (by norm_num) ?_
exact Nat.sub_ne_zero_iff_lt.mpr gp
lemma imo_2022_p5_7_28
(p : β„•)
-- (hβ‚€ : 0 < b)
-- (hp : Nat.Prime p)
-- (hb2p : b < 2 * p)
-- (h₁ : b ! ≀ (2 * p - 1)!)
(gp : 2 ≀ p) :
-- (gp1 : p - 1 + 1 = p)
-- (f : β„• β†’ β„•)
-- (hf : f = fun x => x + 1)
-- (hβ‚‚ : Finset.prod (Finset.range (2 * p - 1)) f = (Finset.prod (Finset.range (p - 1)) fun x => p ^ 2 - (x + 1) ^ 2) * p)
-- (h₃ : (Finset.prod (Finset.range (p - 1)) fun x => p ^ 2 - (x + 1) ^ 2) * p ≀ (p ^ 2) ^ (p - 1) * p)
-- (hβ‚„ : b ! + p ≀ (p ^ 2) ^ (p - 1) * p + p) :
p < (p ^ 2) ^ (p - 1) * p := by
refine lt_mul_left (by linarith) ?_
rw [← pow_mul]
refine Nat.one_lt_pow ?_ (Nat.lt_of_succ_le gp)
refine Nat.mul_ne_zero (by norm_num) ?_
exact Nat.sub_ne_zero_iff_lt.mpr gp
lemma imo_2022_p5_7_29
-- (b : β„•)
(p : β„•)
-- (hβ‚€ : 0 < b)
-- (hp : Nat.Prime p)
-- (hb2p : b < 2 * p)
-- (h₁ : b ! ≀ (2 * p - 1)!)
(gp : 2 ≀ p) :
-- (gp1 : p - 1 + 1 = p)
-- (f : β„• β†’ β„•)
-- (hf : f = fun x => x + 1)
-- (hβ‚‚ : Finset.prod (Finset.range (2 * p - 1)) f = (Finset.prod (Finset.range (p - 1)) fun x => p ^ 2 - (x + 1) ^ 2) * p)
-- (h₃ : (Finset.prod (Finset.range (p - 1)) fun x => p ^ 2 - (x + 1) ^ 2) * p ≀ (p ^ 2) ^ (p - 1) * p)
-- (hβ‚„ : b ! + p ≀ (p ^ 2) ^ (p - 1) * p + p) :
1 < p ^ (2 * (p - 1)) := by
refine Nat.one_lt_pow ?_ (Nat.lt_of_succ_le gp)
refine Nat.mul_ne_zero (by norm_num) ?_
exact Nat.sub_ne_zero_iff_lt.mpr gp
lemma imo_2022_p5_7_30
-- (b : β„•)
(p : β„•)
-- (hβ‚€ : 0 < b)
-- (hp : Nat.Prime p)
-- (hb2p : b < 2 * p)
-- (h₁ : b ! ≀ (2 * p - 1)!)
(gp : 2 ≀ p) :
-- (gp1 : p - 1 + 1 = p)
-- (f : β„• β†’ β„•)
-- (hf : f = fun x => x + 1)
-- (hβ‚‚ : Finset.prod (Finset.range (2 * p - 1)) f = (Finset.prod (Finset.range (p - 1)) fun x => p ^ 2 - (x + 1) ^ 2) * p)
-- (h₃ : (Finset.prod (Finset.range (p - 1)) fun x => p ^ 2 - (x + 1) ^ 2) * p ≀ (p ^ 2) ^ (p - 1) * p)
-- (hβ‚„ : b ! + p ≀ (p ^ 2) ^ (p - 1) * p + p) :
2 * (p - 1) β‰  0 := by
refine Nat.mul_ne_zero (by norm_num) ?_
exact Nat.sub_ne_zero_iff_lt.mpr gp
lemma imo_2022_p5_7_31
(b p : β„•)
-- (hβ‚€ : 0 < b)
-- (hp : Nat.Prime p)
-- (hb2p : b < 2 * p)
-- (h₁ : b ! ≀ (2 * p - 1)!)
-- (gp : 2 ≀ p)
(gp1 : p - 1 + 1 = p)
-- (f : β„• β†’ β„•)
-- (hf : f = fun x => x + 1)
-- (hβ‚‚ : Finset.prod (Finset.range (2 * p - 1)) f = (Finset.prod (Finset.range (p - 1)) fun x => p ^ 2 - (x + 1) ^ 2) * p)
-- (h₃ : (Finset.prod (Finset.range (p - 1)) fun x => p ^ 2 - (x + 1) ^ 2) * p ≀ (p ^ 2) ^ (p - 1) * p)
-- (hβ‚„ : b ! + p ≀ (p ^ 2) ^ (p - 1) * p + p)
(hβ‚… : b ! + p < (p ^ 2) ^ (p - 1) * p * p) :
b ! + p < p ^ (2 * p) := by
rw [mul_assoc _ p p, ← pow_two p] at hβ‚…
rw [← Nat.pow_succ, succ_eq_add_one, gp1] at hβ‚…
rw [Nat.pow_mul]
exact hβ‚…
lemma imo_2022_p5_7_32
(b p : β„•)
-- (hβ‚€ : 0 < b)
-- (hp : Nat.Prime p)
-- (hb2p : b < 2 * p)
-- (h₁ : b ! ≀ (2 * p - 1)!)
-- (gp : 2 ≀ p)
-- (gp1 : p - 1 + 1 = p)
-- (f : β„• β†’ β„•)
-- (hf : f = fun x => x + 1)
-- (hβ‚‚ : Finset.prod (Finset.range (2 * p - 1)) f = (Finset.prod (Finset.range (p - 1)) fun x => p ^ 2 - (x + 1) ^ 2) * p)
-- (h₃ : (Finset.prod (Finset.range (p - 1)) fun x => p ^ 2 - (x + 1) ^ 2) * p ≀ (p ^ 2) ^ (p - 1) * p)
-- (hβ‚„ : b ! + p ≀ (p ^ 2) ^ (p - 1) * p + p)
(hβ‚… : b ! + p < (p ^ 2) ^ p) :
b ! + p < p ^ (2 * p) := by
rw [Nat.pow_mul]
exact hβ‚…
lemma imo_2022_p5_7_33
(b p : β„•)
-- (hβ‚€ : 0 < b)
-- (hp : Nat.Prime p)
-- (hb2p : b < 2 * p)
-- (h₁ : b ! ≀ (2 * p - 1)!)
-- (gp : 2 ≀ p)
(gp1 : p - 1 + 1 = p)
-- (f : β„• β†’ β„•)
-- (hf : f = fun x => x + 1)
-- (hβ‚‚ : Finset.prod (Finset.range (2 * p - 1)) f = (Finset.prod (Finset.range (p - 1)) fun x => p ^ 2 - (x + 1) ^ 2) * p)
-- (h₃ : (Finset.prod (Finset.range (p - 1)) fun x => p ^ 2 - (x + 1) ^ 2) * p ≀ (p ^ 2) ^ (p - 1) * p)
-- (hβ‚„ : b ! + p ≀ (p ^ 2) ^ (p - 1) * p + p)
(hβ‚… : b ! + p < (p ^ 2) ^ (p - 1) * p * p) :
b ! + p < (p ^ 2) ^ p := by
rw [mul_assoc _ p p, ← pow_two p] at hβ‚…
rw [← Nat.pow_succ, succ_eq_add_one, gp1] at hβ‚…
exact hβ‚…
lemma imo_2022_p5_8
(a b p: β„•)
(hβ‚€: 0 < a ∧ 0 < b)
(hp: Nat.Prime p)
(h₁: a ^ p = b.factorial + p)
(hbp: p ≀ b)
(hβ‚‚: p ∣ a)
(hb2p: b < 2 * p) :
(a = p) := by
have gp: p ≀ a := by exact Nat.le_of_dvd hβ‚€.1 hβ‚‚
cases' lt_or_eq_of_le gp with h₃ h₃
. exfalso
cases' hβ‚‚ with c hβ‚‚
have gc: 0 < c := by
by_contra hc0
push_neg at hc0
interval_cases c
simp at *
linarith
by_cases hc: c < p
. have g₁: c ∣ c^p := by exact dvd_pow_self c (by linarith)
have hβ‚„: c ∣ a^p := by
rw [hβ‚‚, mul_pow]
exact dvd_mul_of_dvd_right g₁ (p ^ p)
have hβ‚…: c ∣ b.factorial := by exact Nat.dvd_factorial gc (by linarith)
have gβ‚‚: p = a ^ p - b.factorial := by
symm
rw [add_comm] at h₁
refine (Nat.sub_eq_iff_eq_add ?_).mpr h₁
rw [add_comm] at h₁
exact le.intro (h₁.symm)
have h₆: c ∣ p := by
rw [gβ‚‚]
exact dvd_sub' hβ‚„ hβ‚…
have h₇: c = 1 ∨ c = p := by exact (dvd_prime hp).mp h₆
cases' h₇ with h₇₀ h₇₁
. rw [h₇₀, mul_one] at hβ‚‚
rw [hβ‚‚] at h₃
linarith [h₃]
. rw [h₇₁] at hc
simp at hc
. push_neg at hc
have g₃: p^2 ≀ a := by
rw [hβ‚‚, pow_two]
exact mul_le_mul_left' hc p
have h₃: p^(2*p) ≀ a^p := by
rw [pow_mul]
exact pow_left_mono p g₃
have h₇: b.factorial + p < p^(2*p) := by exact imo_2022_p5_7 b p hp hb2p
rw [←h₁] at h₇
linarith
exact h₃.symm
lemma imo_2022_p5_8_1
(a b p : β„•)
(hβ‚€ : 0 < a ∧ 0 < b)
(hp : Nat.Prime p)
(h₁ : a ^ p = b ! + p)
(hbp : p ≀ b)
(hβ‚‚ : p ∣ a)
(hb2p : b < 2 * p)
(gp : p ≀ a) :
a = p := by
cases' lt_or_eq_of_le gp with h₃ h₃
. exfalso
cases' hβ‚‚ with c hβ‚‚
have gc: 0 < c := by
by_contra hc0
push_neg at hc0
interval_cases c
simp at *
linarith
by_cases hc: c < p
. have g₁: c ∣ c^p := by exact dvd_pow_self c (by linarith)
have hβ‚„: c ∣ a^p := by
rw [hβ‚‚, mul_pow]
exact dvd_mul_of_dvd_right g₁ (p ^ p)
have hβ‚…: c ∣ b.factorial := by exact Nat.dvd_factorial gc (by linarith)
have gβ‚‚: p = a ^ p - b.factorial := by
symm
rw [add_comm] at h₁
refine (Nat.sub_eq_iff_eq_add ?_).mpr h₁
rw [add_comm] at h₁
exact le.intro (h₁.symm)
have h₆: c ∣ p := by
rw [gβ‚‚]
exact dvd_sub' hβ‚„ hβ‚…
have h₇: c = 1 ∨ c = p := by exact (dvd_prime hp).mp h₆
cases' h₇ with h₇₀ h₇₁
. rw [h₇₀, mul_one] at hβ‚‚
rw [hβ‚‚] at h₃
linarith [h₃]
. rw [h₇₁] at hc
simp at hc
. push_neg at hc
have g₃: p^2 ≀ a := by
rw [hβ‚‚, pow_two]
exact mul_le_mul_left' hc p
have h₃: p^(2*p) ≀ a^p := by
rw [pow_mul]
exact pow_left_mono p g₃
have h₇: b.factorial + p < p^(2*p) := by exact imo_2022_p5_7 b p hp hb2p
rw [←h₁] at h₇
linarith
. exact h₃.symm
lemma imo_2022_p5_8_2
(a b p : β„•)
(hβ‚€ : 0 < a ∧ 0 < b)
(hp : Nat.Prime p)
(h₁ : a ^ p = b ! + p)
(hbp : p ≀ b)
(hβ‚‚ : p ∣ a)
(hb2p : b < 2 * p)
-- (gp : p ≀ a)
(h₃ : p < a) :
a = p := by
exfalso
cases' hβ‚‚ with c hβ‚‚
have gc: 0 < c := by
by_contra hc0
push_neg at hc0
interval_cases c
simp at *
linarith
by_cases hc: c < p
. have g₁: c ∣ c^p := by exact dvd_pow_self c (by linarith)
have hβ‚„: c ∣ a^p := by
rw [hβ‚‚, mul_pow]
exact dvd_mul_of_dvd_right g₁ (p ^ p)
have hβ‚…: c ∣ b.factorial := by exact Nat.dvd_factorial gc (by linarith)
have gβ‚‚: p = a ^ p - b.factorial := by
symm
rw [add_comm] at h₁
refine (Nat.sub_eq_iff_eq_add ?_).mpr h₁
rw [add_comm] at h₁
exact le.intro (h₁.symm)
have h₆: c ∣ p := by
rw [gβ‚‚]
exact dvd_sub' hβ‚„ hβ‚…
have h₇: c = 1 ∨ c = p := by exact (dvd_prime hp).mp h₆
cases' h₇ with h₇₀ h₇₁
. rw [h₇₀, mul_one] at hβ‚‚
rw [hβ‚‚] at h₃
linarith [h₃]
. rw [h₇₁] at hc
simp at hc
. push_neg at hc
have g₃: p^2 ≀ a := by
rw [hβ‚‚, pow_two]
exact mul_le_mul_left' hc p
have h₃: p^(2*p) ≀ a^p := by
rw [pow_mul]
exact pow_left_mono p g₃
have h₇: b.factorial + p < p^(2*p) := by exact imo_2022_p5_7 b p hp hb2p
rw [←h₁] at h₇
linarith
lemma imo_2022_p5_8_3
(a b p : β„•)
(hβ‚€ : 0 < a ∧ 0 < b)
(hp : Nat.Prime p)
(h₁ : a ^ p = b ! + p)
(hbp : p ≀ b)
(hb2p : b < 2 * p)
-- (gp : p ≀ a)
(h₃ : p < a)
(c : β„•)
(hβ‚‚ : a = p * c) :
False := by
have gc: 0 < c := by
by_contra hc0
push_neg at hc0
interval_cases c
simp at *
linarith
by_cases hc: c < p
. have g₁: c ∣ c^p := by exact dvd_pow_self c (by linarith)
have hβ‚„: c ∣ a^p := by
rw [hβ‚‚, mul_pow]
exact dvd_mul_of_dvd_right g₁ (p ^ p)
have hβ‚…: c ∣ b.factorial := by exact Nat.dvd_factorial gc (by linarith)
have gβ‚‚: p = a ^ p - b.factorial := by
symm
rw [add_comm] at h₁
refine (Nat.sub_eq_iff_eq_add ?_).mpr h₁
rw [add_comm] at h₁
exact le.intro (h₁.symm)
have h₆: c ∣ p := by
rw [gβ‚‚]
exact dvd_sub' hβ‚„ hβ‚…
have h₇: c = 1 ∨ c = p := by exact (dvd_prime hp).mp h₆
cases' h₇ with h₇₀ h₇₁
. rw [h₇₀, mul_one] at hβ‚‚
rw [hβ‚‚] at h₃
linarith [h₃]
. rw [h₇₁] at hc
simp at hc
. push_neg at hc
have g₃: p^2 ≀ a := by
rw [hβ‚‚, pow_two]
exact mul_le_mul_left' hc p
have h₃: p^(2*p) ≀ a^p := by
rw [pow_mul]
exact pow_left_mono p g₃
have h₇: b.factorial + p < p^(2*p) := by exact imo_2022_p5_7 b p hp hb2p
rw [←h₁] at h₇
linarith
lemma imo_2022_p5_8_4
(a b p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
-- (hp : Nat.Prime p)
-- (h₁ : a ^ p = b ! + p)
(hbp : p ≀ b)
(hb2p : b < 2 * p)
-- (gp : p ≀ a)
(h₃ : p < a)
(c : β„•)
(hβ‚‚ : a = p * c) :
0 < c := by
by_contra hc0
push_neg at hc0
interval_cases c
simp at *
linarith
lemma imo_2022_p5_8_5
(a b p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
-- (hp : Nat.Prime p)
-- (h₁ : a ^ p = b ! + p)
(hbp : p ≀ b)
(hb2p : b < 2 * p)
-- (gp : p ≀ a)
(h₃ : p < a)
(c : β„•)
(hβ‚‚ : a = p * c)
(hc0 : c ≀ 0) :
False := by
interval_cases c
simp at *
linarith
lemma imo_2022_p5_8_6
(a b p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
-- (hp : Nat.Prime p)
-- (h₁ : a ^ p = b ! + p)
(hbp : p ≀ b)
(hb2p : b < 2 * p)
-- (gp : p ≀ a)
(h₃ : p < a)
-- (c : β„•)
(hβ‚‚ : a = p * 0)
(hc0 : 0 ≀ 0) :
False := by
simp at *
linarith
lemma imo_2022_p5_8_7
(a b p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
(hp : Nat.Prime p)
(h₁ : a ^ p = b ! + p)
(hbp : p ≀ b)
(hb2p : b < 2 * p)
-- (gp : p ≀ a)
(h₃ : p < a)
(c : β„•)
(hβ‚‚ : a = p * c)
(gc : 0 < c) :
False := by
by_cases hc: c < p
. have g₁: c ∣ c^p := by exact dvd_pow_self c (by linarith)
have hβ‚„: c ∣ a^p := by
rw [hβ‚‚, mul_pow]
exact dvd_mul_of_dvd_right g₁ (p ^ p)
have hβ‚…: c ∣ b.factorial := by exact Nat.dvd_factorial gc (by linarith)
have gβ‚‚: p = a ^ p - b.factorial := by
symm
rw [add_comm] at h₁
refine (Nat.sub_eq_iff_eq_add ?_).mpr h₁
rw [add_comm] at h₁
exact le.intro (h₁.symm)
have h₆: c ∣ p := by
rw [gβ‚‚]
exact dvd_sub' hβ‚„ hβ‚…
have h₇: c = 1 ∨ c = p := by exact (dvd_prime hp).mp h₆
cases' h₇ with h₇₀ h₇₁
. rw [h₇₀, mul_one] at hβ‚‚
rw [hβ‚‚] at h₃
linarith [h₃]
. rw [h₇₁] at hc
simp at hc
. push_neg at hc
have g₃: p^2 ≀ a := by
rw [hβ‚‚, pow_two]
exact mul_le_mul_left' hc p
have h₃: p^(2*p) ≀ a^p := by
rw [pow_mul]
exact pow_left_mono p g₃
have h₇: b.factorial + p < p^(2*p) := by exact imo_2022_p5_7 b p hp hb2p
rw [←h₁] at h₇
linarith
lemma imo_2022_p5_8_8
(a b p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
(hp : Nat.Prime p)
(h₁ : a ^ p = b ! + p)
(hbp : p ≀ b)
-- (hb2p : b < 2 * p)
-- (gp : p ≀ a)
(h₃ : p < a)
(c : β„•)
(hβ‚‚ : a = p * c)
(gc : 0 < c)
(hc : c < p) :
False := by
have g₁: c ∣ c^p := by exact dvd_pow_self c (by linarith)
have hβ‚„: c ∣ a^p := by
rw [hβ‚‚, mul_pow]
exact dvd_mul_of_dvd_right g₁ (p ^ p)
have hβ‚…: c ∣ b.factorial := by exact Nat.dvd_factorial gc (by linarith)
have gβ‚‚: p = a ^ p - b.factorial := by
symm
rw [add_comm] at h₁
refine (Nat.sub_eq_iff_eq_add ?_).mpr h₁
rw [add_comm] at h₁
exact le.intro (h₁.symm)
have h₆: c ∣ p := by
rw [gβ‚‚]
exact dvd_sub' hβ‚„ hβ‚…
have h₇: c = 1 ∨ c = p := by exact (dvd_prime hp).mp h₆
cases' h₇ with h₇₀ h₇₁
. rw [h₇₀, mul_one] at hβ‚‚
rw [hβ‚‚] at h₃
linarith [h₃]
. rw [h₇₁] at hc
simp at hc
lemma imo_2022_p5_8_9
(a b p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
(hp : Nat.Prime p)
(h₁ : a ^ p = b ! + p)
(hbp : p ≀ b)
-- (hb2p : b < 2 * p)
-- (gp : p ≀ a)
(h₃ : p < a)
(c : β„•)
(hβ‚‚ : a = p * c)
(gc : 0 < c)
(hc : c < p)
(g₁ : c ∣ c ^ p) :
False := by
have hβ‚„: c ∣ a^p := by
rw [hβ‚‚, mul_pow]
exact dvd_mul_of_dvd_right g₁ (p ^ p)
have hβ‚…: c ∣ b.factorial := by exact Nat.dvd_factorial gc (by linarith)
have gβ‚‚: p = a ^ p - b.factorial := by
symm
rw [add_comm] at h₁
refine (Nat.sub_eq_iff_eq_add ?_).mpr h₁
rw [add_comm] at h₁
exact le.intro (h₁.symm)
have h₆: c ∣ p := by
rw [gβ‚‚]
exact dvd_sub' hβ‚„ hβ‚…
have h₇: c = 1 ∨ c = p := by exact (dvd_prime hp).mp h₆
cases' h₇ with h₇₀ h₇₁
. rw [h₇₀, mul_one] at hβ‚‚
rw [hβ‚‚] at h₃
linarith [h₃]
. rw [h₇₁] at hc
simp at hc
lemma imo_2022_p5_8_10
(a p : β„•)
-- (b : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
-- (hp : Nat.Prime p)
-- (h₁ : a ^ p = b ! + p)
-- (hbp : p ≀ b)
-- (hb2p : b < 2 * p)
-- (gp : p ≀ a)
-- (h₃ : p < a)
(c : β„•)
(hβ‚‚ : a = p * c)
-- (gc : 0 < c)
-- (hc : c < p)
(g₁ : c ∣ c ^ p) :
c ∣ a ^ p := by
rw [hβ‚‚, mul_pow]
exact dvd_mul_of_dvd_right g₁ (p ^ p)
lemma imo_2022_p5_8_11
(a b p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
(hp : Nat.Prime p)
(h₁ : a ^ p = b ! + p)
(hbp : p ≀ b)
-- (hb2p : b < 2 * p)
-- (gp : p ≀ a)
(h₃ : p < a)
(c : β„•)
(hβ‚‚ : a = p * c)
(gc : 0 < c)
(hc : c < p)
(g₁ : c ∣ c ^ p)
(hβ‚„ : c ∣ a ^ p) :
False := by
have hβ‚…: c ∣ b.factorial := by exact Nat.dvd_factorial gc (by linarith)
have gβ‚‚: p = a ^ p - b.factorial := by
symm
rw [add_comm] at h₁
refine (Nat.sub_eq_iff_eq_add ?_).mpr h₁
rw [add_comm] at h₁
exact le.intro (h₁.symm)
have h₆: c ∣ p := by
rw [gβ‚‚]
exact dvd_sub' hβ‚„ hβ‚…
have h₇: c = 1 ∨ c = p := by exact (dvd_prime hp).mp h₆
cases' h₇ with h₇₀ h₇₁
. rw [h₇₀, mul_one] at hβ‚‚
rw [hβ‚‚] at h₃
linarith [h₃]
. rw [h₇₁] at hc
simp at hc
lemma imo_2022_p5_8_12
(a b p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
(hp : Nat.Prime p)
(h₁ : a ^ p = b ! + p)
-- (hbp : p ≀ b)
-- (hb2p : b < 2 * p)
-- (gp : p ≀ a)
(h₃ : p < a)
(c : β„•)
(hβ‚‚ : a = p * c)
(gc : 0 < c)
(hc : c < p)
(g₁ : c ∣ c ^ p)
(hβ‚„ : c ∣ a ^ p)
(hβ‚… : c ∣ b !) :
False := by
have gβ‚‚: p = a ^ p - b.factorial := by
symm
rw [add_comm] at h₁
refine (Nat.sub_eq_iff_eq_add ?_).mpr h₁
rw [add_comm] at h₁
exact le.intro (h₁.symm)
have h₆: c ∣ p := by
rw [gβ‚‚]
exact dvd_sub' hβ‚„ hβ‚…
have h₇: c = 1 ∨ c = p := by exact (dvd_prime hp).mp h₆
cases' h₇ with h₇₀ h₇₁
. rw [h₇₀, mul_one] at hβ‚‚
rw [hβ‚‚] at h₃
linarith [h₃]
. rw [h₇₁] at hc
simp at hc
lemma imo_2022_p5_8_13
(a b p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
-- (hp : Nat.Prime p)
(h₁ : a ^ p = b ! + p)
(hbp : p ≀ b)
(hb2p : b < 2 * p)
(gp : p ≀ a)
(h₃ : p < a)
(c : β„•)
(hβ‚‚ : a = p * c)
(gc : 0 < c)
(hc : c < p)
(g₁ : c ∣ c ^ p)
(hβ‚„ : c ∣ a ^ p)
(hβ‚… : c ∣ b !) :
p = a ^ p - b ! := by
symm
rw [add_comm] at h₁
refine (Nat.sub_eq_iff_eq_add ?_).mpr h₁
rw [add_comm] at h₁
exact le.intro (h₁.symm)
lemma imo_2022_p5_8_14
(a b p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
-- (hp : Nat.Prime p)
(h₁ : a ^ p = p + b !)
(hbp : p ≀ b)
(hb2p : b < 2 * p)
(gp : p ≀ a)
(h₃ : p < a)
(c : β„•)
(hβ‚‚ : a = p * c)
(gc : 0 < c)
(hc : c < p)
(g₁ : c ∣ c ^ p)
(hβ‚„ : c ∣ a ^ p)
(hβ‚… : c ∣ b !) :
a ^ p - b ! = p := by
refine (Nat.sub_eq_iff_eq_add ?_).mpr h₁
rw [add_comm] at h₁
exact le.intro (h₁.symm)
lemma imo_2022_p5_8_15
(a b p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
-- (hp : Nat.Prime p)
(h₁ : a ^ p = p + b !)
(hbp : p ≀ b)
(hb2p : b < 2 * p)
(gp : p ≀ a)
(h₃ : p < a)
(c : β„•)
(hβ‚‚ : a = p * c)
(gc : 0 < c)
(hc : c < p)
(g₁ : c ∣ c ^ p)
(hβ‚„ : c ∣ a ^ p)
(hβ‚… : c ∣ b !) :
b ! ≀ a ^ p := by
rw [add_comm] at h₁
exact le.intro (h₁.symm)
lemma imo_2022_p5_8_16
(a b p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
(hp : Nat.Prime p)
-- (h₁ : a ^ p = b ! + p)
-- (hbp : p ≀ b)
-- (hb2p : b < 2 * p)
-- (gp : p ≀ a)
(h₃ : p < a)
(c : β„•)
(hβ‚‚ : a = p * c)
(gc : 0 < c)
(hc : c < p)
(g₁ : c ∣ c ^ p)
(hβ‚„ : c ∣ a ^ p)
(hβ‚… : c ∣ b !)
(gβ‚‚ : p = a ^ p - b !) :
False := by
have h₆: c ∣ p := by
rw [gβ‚‚]
exact dvd_sub' hβ‚„ hβ‚…
have h₇: c = 1 ∨ c = p := by exact (dvd_prime hp).mp h₆
cases' h₇ with h₇₀ h₇₁
. rw [h₇₀, mul_one] at hβ‚‚
rw [hβ‚‚] at h₃
linarith [h₃]
. rw [h₇₁] at hc
simp at hc
lemma imo_2022_p5_8_17
(a b p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
-- (hp : Nat.Prime p)
-- (h₁ : a ^ p = b ! + p)
-- (hbp : p ≀ b)
-- (hb2p : b < 2 * p)
-- (gp : p ≀ a)
-- (h₃ : p < a)
(c : β„•)
-- (hβ‚‚ : a = p * c)
-- (gc : 0 < c)
-- (hc : c < p)
-- (g₁ : c ∣ c ^ p)
(hβ‚„ : c ∣ a ^ p)
(hβ‚… : c ∣ b !)
(gβ‚‚ : p = a ^ p - b !) :
c ∣ p := by
rw [gβ‚‚]
exact dvd_sub' hβ‚„ hβ‚…
lemma imo_2022_p5_8_18
(a b p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
(hp : Nat.Prime p)
-- (h₁ : a ^ p = b ! + p)
-- (hbp : p ≀ b)
-- (hb2p : b < 2 * p)
-- (gp : p ≀ a)
(h₃ : p < a)
(c : β„•)
(hβ‚‚ : a = p * c)
(gc : 0 < c)
(hc : c < p)
(g₁ : c ∣ c ^ p)
(hβ‚„ : c ∣ a ^ p)
(hβ‚… : c ∣ b !)
(gβ‚‚ : p = a ^ p - b !)
(h₆ : c ∣ p) :
False := by
have h₇: c = 1 ∨ c = p := by exact (dvd_prime hp).mp h₆
cases' h₇ with h₇₀ h₇₁
. rw [h₇₀, mul_one] at hβ‚‚
rw [hβ‚‚] at h₃
linarith [h₃]
. rw [h₇₁] at hc
simp at hc
lemma imo_2022_p5_8_19
(a b p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
-- (hp : Nat.Prime p)
-- (h₁ : a ^ p = b ! + p)
-- (hbp : p ≀ b)
-- (hb2p : b < 2 * p)
-- (gp : p ≀ a)
(h₃ : p < a)
(c : β„•)
(hβ‚‚ : a = p * c)
(gc : 0 < c)
(hc : c < p)
(g₁ : c ∣ c ^ p)
(hβ‚„ : c ∣ a ^ p)
(hβ‚… : c ∣ b !)
(gβ‚‚ : p = a ^ p - b !)
(h₆ : c ∣ p)
(h₇ : c = 1 ∨ c = p) :
False := by
cases' h₇ with h₇₀ h₇₁
. rw [h₇₀, mul_one] at hβ‚‚
rw [hβ‚‚] at h₃
linarith [h₃]
. rw [h₇₁] at hc
simp at hc
lemma imo_2022_p5_8_20
(a b p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
-- (hp : Nat.Prime p)
-- (h₁ : a ^ p = b ! + p)
-- (hbp : p ≀ b)
-- (hb2p : b < 2 * p)
-- (gp : p ≀ a)
(h₃ : p < a)
(c : β„•)
(hβ‚‚ : a = p * c)
(gc : 0 < c)
(hc : c < p)
(g₁ : c ∣ c ^ p)
(hβ‚„ : c ∣ a ^ p)
(hβ‚… : c ∣ b !)
(gβ‚‚ : p = a ^ p - b !)
(h₆ : c ∣ p)
(h₇₀ : c = 1) :
False := by
rw [h₇₀, mul_one] at hβ‚‚
rw [hβ‚‚] at h₃
linarith [h₃]
lemma imo_2022_p5_8_21
(a b p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
-- (hp : Nat.Prime p)
-- (h₁ : a ^ p = b ! + p)
-- (hbp : p ≀ b)
-- (hb2p : b < 2 * p)
-- (gp : p ≀ a)
-- (h₃ : p < a)
(c : β„•)
-- (hβ‚‚ : a = p * c)
-- (gc : 0 < c)
(hc : c < p)
(g₁ : c ∣ c ^ p)
(hβ‚„ : c ∣ a ^ p)
(hβ‚… : c ∣ b !)
(gβ‚‚ : p = a ^ p - b !)
(h₆ : c ∣ p)
(h₇₁ : c = p) :
False := by
rw [h₇₁] at hc
simp at hc
lemma imo_2022_p5_8_22
(a b p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
(hp : Nat.Prime p)
(h₁ : a ^ p = b ! + p)
-- (hbp : p ≀ b)
(hb2p : b < 2 * p)
-- (gp : p ≀ a)
-- (h₃ : p < a)
(c : β„•)
(hβ‚‚ : a = p * c)
-- (gc : 0 < c)
(hc : p ≀ c) :
False := by
have g₃: p^2 ≀ a := by
rw [hβ‚‚, pow_two]
exact mul_le_mul_left' hc p
have h₃: p^(2*p) ≀ a^p := by
rw [pow_mul]
exact pow_left_mono p g₃
have h₇: b.factorial + p < p^(2*p) := by exact imo_2022_p5_7 b p hp hb2p
rw [←h₁] at h₇
linarith
lemma imo_2022_p5_8_23
(a p : β„•)
-- (b : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
-- (hp : Nat.Prime p)
-- (h₁ : a ^ p = b ! + p)
-- (hbp : p ≀ b)
-- (hb2p : b < 2 * p)
-- (gp : p ≀ a)
-- (h₃ : p < a)
(c : β„•)
(hβ‚‚ : a = p * c)
-- (gc : 0 < c)
(hc : p ≀ c) :
p ^ 2 ≀ a := by
rw [hβ‚‚, pow_two]
exact mul_le_mul_left' hc p
lemma imo_2022_p5_8_24
(a b p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
(hp : Nat.Prime p)
(h₁ : a ^ p = b ! + p)
-- (hbp : p ≀ b)
(hb2p : b < 2 * p)
-- (gp : p ≀ a)
-- (h₃ : p < a)
-- (c : β„•)
-- (hβ‚‚ : a = p * c)
-- (gc : 0 < c)
-- (hc : p ≀ c)
(g₃ : p ^ 2 ≀ a) :
False := by
have h₃: p^(2*p) ≀ a^p := by
rw [pow_mul]
exact pow_left_mono p g₃
have h₇: b.factorial + p < p^(2*p) := by exact imo_2022_p5_7 b p hp hb2p
rw [←h₁] at h₇
linarith
lemma imo_2022_p5_8_25
(a p : β„•)
-- (b : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
-- (hp : Nat.Prime p)
-- (h₁ : a ^ p = b ! + p)
-- (hbp : p ≀ b)
-- (hb2p : b < 2 * p)
-- (gp : p ≀ a)
-- (h₃ : p < a)
-- (c : β„•)
-- (hβ‚‚ : a = p * c)
-- (gc : 0 < c)
-- (hc : p ≀ c)
(g₃ : p ^ 2 ≀ a) :
p ^ (2 * p) ≀ a ^ p := by
rw [pow_mul]
exact pow_left_mono p g₃
lemma imo_2022_p5_8_26
(a b p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
(hp : Nat.Prime p)
(h₁ : a ^ p = b ! + p)
-- (hbp : p ≀ b)
(hb2p : b < 2 * p)
-- (gp : p ≀ a)
-- (h31 : p < a)
-- (c : β„•)
-- (hβ‚‚ : a = p * c)
-- (gc : 0 < c)
-- (hc : p ≀ c)
-- (g₃ : p ^ 2 ≀ a)
(h₃ : p ^ (2 * p) ≀ a ^ p) :
False := by
have h₇: b.factorial + p < p^(2*p) := by exact imo_2022_p5_7 b p hp hb2p
rw [←h₁] at h₇
linarith
lemma imo_2022_p5_8_27
(a b p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
-- (hp : Nat.Prime p)
(h₁ : a ^ p = b ! + p)
-- (hbp : p ≀ b)
-- (hb2p : b < 2 * p)
-- (gp : p ≀ a)
-- (h31 : p < a)
-- (c : β„•)
-- (hβ‚‚ : a = p * c)
-- (gc : 0 < c)
-- (hc : p ≀ c)
-- (g₃ : p ^ 2 ≀ a)
(h₃ : p ^ (2 * p) ≀ a ^ p)
(h₇ : b ! + p < p ^ (2 * p)) :
False := by
rw [←h₁] at h₇
linarith
lemma imo_2022_p5_9
(p: β„•)
-- (hp: Nat.Prime p)
(hp5: 5 ≀ p) :
((↑p:β„€) ^ p ≑ ↑p * (↑p + 1) * (-1) ^ (p - 1) + (-1) ^ p [ZMOD (↑p + 1) ^ 2]) := by
-- have h₁: ↑p ^ p = Finset.range -- binomial expansion
-- take the first two elements out
-- show that all the other elements are individually divisible by (p+1)^2
-- conclude that their sum is divisible by (p+1)^2
-- summation ≑ 0 [ZMOD (↑p + 1) ^ 2]
-- now show that Nat.modeq.add
have hβ‚€: (↑p:β„€) = (↑p + 1) - 1 := by simp
have h₁: ↑p ^ p ≑ ((↑p + 1) - 1) ^ p [ZMOD (↑p + 1) ^ 2] := by rw [← hβ‚€]
have hβ‚‚: (((↑p:β„€) + 1) - 1) ^ p = (↑p * (↑p + 1) * (-1:β„€) ^ (p - 1) + (-1) ^ p)
+ (Finset.Ico 2 (p + 1)).sum (fun (k : β„•) =>
(↑p + 1) ^ k * (-1:β„€) ^ (p - k) * ↑(p.choose k)) := by
rw [sub_eq_add_neg]
rw [add_pow ((↑p:β„€) + 1) (-1:β„€)]
have gβ‚€: 2 ≀ p + 1 := by
have ggβ‚€: 5 + 1 ≀ p + 1 := by exact add_le_add_right hp5 1
refine le_trans ?_ ggβ‚€
norm_num
have g₁: 1 ≀ 2 := by norm_num
rw [← Finset.sum_range_add_sum_Ico _ gβ‚€]
rw [← Finset.sum_range_add_sum_Ico _ g₁]
simp
rw [add_comm]
simp
rw [mul_comm]
rw [mul_assoc]
have h₃: 0 ≑ (Finset.Ico 2 (p + 1)).sum (fun (k : β„•) => (↑p + 1) ^ k * (-1) ^ (p - k) * ↑(p.choose k))
[ZMOD (↑p + 1) ^ 2] := by
refine Int.modEq_of_dvd ?_
simp
refine Finset.dvd_sum ?_
intros x gβ‚€
have gx: 2 ≀ x := by exact (Finset.mem_Ico.mp gβ‚€).left
rw [mul_assoc]
refine dvd_mul_of_dvd_left ?_ ((-1:β„€) ^ (p - x) * ↑(p.choose x))
refine pow_dvd_pow ((↑p:β„€) + 1) gx
rw [hβ‚‚] at h₁
rw [← add_zero ((↑p:β„€) ^ p)] at h₁
exact Int.ModEq.add_right_cancel h₃ h₁
lemma imo_2022_p5_9_1
(p : β„•)
(hp5 : 5 ≀ p)
-- (hβ‚€ : ↑p = ↑p + 1 - 1)
(h₁ : ↑p ^ p ≑ (↑p + 1 - 1) ^ p [ZMOD (↑p + 1) ^ 2]) :
↑p ^ p ≑ ↑p * (↑p + 1) * (-1) ^ (p - 1) + (-1) ^ p [ZMOD (↑p + 1) ^ 2] := by
have hβ‚‚: (((↑p:β„€) + 1) - 1) ^ p = (↑p * (↑p + 1) * (-1:β„€) ^ (p - 1) + (-1) ^ p)
+ (Finset.Ico 2 (p + 1)).sum (fun (k : β„•) =>
(↑p + 1) ^ k * (-1:β„€) ^ (p - k) * ↑(p.choose k)) := by
rw [sub_eq_add_neg]
rw [add_pow ((↑p:β„€) + 1) (-1:β„€)]
have gβ‚€: 2 ≀ p + 1 := by
have ggβ‚€: 5 + 1 ≀ p + 1 := by exact add_le_add_right hp5 1
refine le_trans ?_ ggβ‚€
norm_num
have g₁: 1 ≀ 2 := by norm_num
rw [← Finset.sum_range_add_sum_Ico _ gβ‚€]
rw [← Finset.sum_range_add_sum_Ico _ g₁]
simp
rw [add_comm]
simp
rw [mul_comm]
rw [mul_assoc]
have h₃: 0 ≑ (Finset.Ico 2 (p + 1)).sum (fun (k : β„•) => (↑p + 1) ^ k * (-1) ^ (p - k) * ↑(p.choose k))
[ZMOD (↑p + 1) ^ 2] := by
refine Int.modEq_of_dvd ?_
simp
refine Finset.dvd_sum ?_
intros x gβ‚€
have gx: 2 ≀ x := by exact (Finset.mem_Ico.mp gβ‚€).left
rw [mul_assoc]
refine dvd_mul_of_dvd_left ?_ ((-1:β„€) ^ (p - x) * ↑(p.choose x))
refine pow_dvd_pow ((↑p:β„€) + 1) gx
rw [hβ‚‚] at h₁
rw [← add_zero ((↑p:β„€) ^ p)] at h₁
exact Int.ModEq.add_right_cancel h₃ h₁
lemma imo_2022_p5_9_2
(p : β„•)
(hp5 : 5 ≀ p) :
-- (hβ‚€ : ↑p = ↑p + 1 - 1)
-- (h₁ : ↑p ^ p ≑ (↑p + 1 - 1) ^ p [ZMOD (↑p + 1) ^ 2]) :
(↑p + 1 - 1) ^ p =
↑p * (↑p + 1) * (-1:β„€) ^ (p - 1) + (-1) ^ p +
Finset.sum (Finset.Ico 2 (p + 1)) fun k => (↑p + 1) ^ k * (-1:β„€) ^ (p - k) * ↑(choose p k) := by
rw [sub_eq_add_neg]
rw [add_pow ((↑p:β„€) + 1) (-1:β„€)]
have gβ‚€: 2 ≀ p + 1 := by
have ggβ‚€: 5 + 1 ≀ p + 1 := by exact add_le_add_right hp5 1
refine le_trans ?_ ggβ‚€
norm_num
have g₁: 1 ≀ 2 := by norm_num
rw [← Finset.sum_range_add_sum_Ico _ gβ‚€]
rw [← Finset.sum_range_add_sum_Ico _ g₁]
simp
rw [add_comm]
simp
rw [mul_comm]
rw [mul_assoc]
lemma imo_2022_p5_9_3
(p : β„•)
(hp5 : 5 ≀ p) :
-- (hβ‚€ : ↑p = ↑p + 1 - 1)
-- (h₁ : ↑p ^ p ≑ (↑p + 1 - 1) ^ p [ZMOD (↑p + 1) ^ 2])
(Finset.sum (Finset.range (p + 1)) fun m => ((↑p:β„€) + 1) ^ m * (-1:β„€) ^ (p - m) * ↑(choose p m)) =
(↑p:β„€) * ((↑p:β„€) + 1) * (-1:β„€) ^ (p - 1) + (-1) ^ p +
Finset.sum (Finset.Ico 2 (p + 1)) fun k => ((↑p:β„€) + 1) ^ k * (-1:β„€) ^ (p - k) * ↑(choose p k) := by
have gβ‚€: 2 ≀ p + 1 := by
have ggβ‚€: 5 + 1 ≀ p + 1 := by exact add_le_add_right hp5 1
refine le_trans ?_ ggβ‚€
norm_num
have g₁: 1 ≀ 2 := by norm_num
rw [← Finset.sum_range_add_sum_Ico _ gβ‚€]
rw [← Finset.sum_range_add_sum_Ico _ g₁]
simp
rw [add_comm]
simp
rw [mul_comm]
rw [mul_assoc]
lemma imo_2022_p5_9_4
(p : β„•)
(hp5 : 5 ≀ p) :
-- (hβ‚€ : ↑p = ↑p + 1 - 1)
-- (h₁ : ↑p ^ p ≑ (↑p + 1 - 1) ^ p [ZMOD (↑p + 1) ^ 2]) :
(Finset.sum (Finset.range (p + 1)) fun m => ((↑p + 1) ^ m * (-1:β„€) ^ (p - m) * ↑(choose p m))) =
↑p * (↑p + 1) * (-1:β„€) ^ (p - 1) + (-1:β„€) ^ p +
Finset.sum (Finset.Ico 2 (p + 1)) fun k => (↑p + 1) ^ k * (-1:β„€) ^ (p - k) * ↑(choose p k) := by
have gβ‚€: 2 ≀ p + 1 := by
have ggβ‚€: 5 + 1 ≀ p + 1 := by exact add_le_add_right hp5 1
refine le_trans ?_ ggβ‚€
norm_num
have g₁: 1 ≀ 2 := by norm_num
rw [← Finset.sum_range_add_sum_Ico _ gβ‚€]
rw [← Finset.sum_range_add_sum_Ico _ g₁]
simp
rw [add_comm]
simp
rw [mul_comm]
rw [mul_assoc]
lemma imo_2022_p5_9_5
(p : β„•)
(hp5 : 5 ≀ p) :
-- (hβ‚€ : ↑p = ↑p + 1 - 1)
-- (h₁ : ↑p ^ p ≑ (↑p + 1 - 1) ^ p [ZMOD (↑p + 1) ^ 2]) :
2 ≀ p + 1 := by
have ggβ‚€: 5 + 1 ≀ p + 1 := by exact add_le_add_right hp5 1
refine le_trans ?_ ggβ‚€
norm_num
lemma imo_2022_p5_9_6
(p : β„•)
-- (hp5 : 5 ≀ p)
-- (hβ‚€ : ↑p = ↑p + 1 - 1)
-- (h₁ : ↑p ^ p ≑ (↑p + 1 - 1) ^ p [ZMOD (↑p + 1) ^ 2])
(gβ‚€ : 2 ≀ p + 1) :
(Finset.sum (Finset.range (p + 1)) fun m => (↑p + 1) ^ m * (-1:β„€) ^ (p - m) * ↑(choose p m)) =
↑p * (↑p + 1) * (-1) ^ (p - 1) + (-1) ^ p +
Finset.sum (Finset.Ico 2 (p + 1)) fun k => (↑p + 1) ^ k * (-1:β„€) ^ (p - k) * ↑(choose p k) := by
have g₁: 1 ≀ 2 := by norm_num
rw [← Finset.sum_range_add_sum_Ico _ gβ‚€]
rw [← Finset.sum_range_add_sum_Ico _ g₁]
simp
rw [add_comm]
simp
rw [mul_comm]
rw [mul_assoc]
lemma imo_2022_p5_9_7
(p : β„•) :
-- (hp5 : 5 ≀ p)
-- (hβ‚€ : ↑p = ↑p + 1 - 1)
-- (h₁ : ↑p ^ p ≑ (↑p + 1 - 1) ^ p [ZMOD (↑p + 1) ^ 2])
-- (gβ‚€ : 2 ≀ p + 1)
-- (g₁ : 1 ≀ 2) :
(((Finset.sum (Finset.range 1) fun k => (↑p + 1) ^ k * (-1:β„€) ^ (p - k) * ↑(choose p k)) +
Finset.sum (Finset.Ico 1 2) fun k => (↑p + 1) ^ k * (-1:β„€) ^ (p - k) * ↑(choose p k)) +
Finset.sum (Finset.Ico 2 (p + 1)) fun k => (↑p + 1) ^ k * (-1:β„€) ^ (p - k) * ↑(choose p k)) =
↑p * (↑p + 1) * (-1) ^ (p - 1) + (-1) ^ p +
Finset.sum (Finset.Ico 2 (p + 1)) fun k => (↑p + 1) ^ k * (-1:β„€) ^ (p - k) * ↑(choose p k) := by
simp
rw [add_comm]
simp
rw [mul_comm]
rw [mul_assoc]
lemma imo_2022_p5_9_8
(p : β„•) :
-- (hp5 : 5 ≀ p)
-- (hβ‚€ : ↑p = ↑p + 1 - 1)
-- (h₁ : ↑p ^ p ≑ (↑p + 1 - 1) ^ p [ZMOD (↑p + 1) ^ 2])
-- (gβ‚€ : 2 ≀ p + 1)
-- (g₁ : 1 ≀ 2) :
(-1:β„€) ^ p + (↑p + 1) * (-1) ^ (p - 1) * ↑p = ↑p * (↑p + 1) * (-1) ^ (p - 1) + (-1) ^ p := by
rw [add_comm]
simp
rw [mul_comm]
rw [mul_assoc]
lemma imo_2022_p5_9_9
(p : β„•) :
-- (hp5 : 5 ≀ p)
-- (hβ‚€ : ↑p = ↑p + 1 - 1)
-- (h₁ : ↑p ^ p ≑ (↑p + 1 - 1) ^ p [ZMOD (↑p + 1) ^ 2])
-- (gβ‚€ : 2 ≀ p + 1)
-- (g₁ : 1 ≀ 2) :
(↑p + 1) * (-1:β„€) ^ (p - 1) * ↑p = ↑p * (↑p + 1) * (-1) ^ (p - 1) := by
rw [mul_comm]
rw [mul_assoc]
lemma imo_2022_p5_9_10
(p : β„•)
(hβ‚€: (↑p + 1) * (-1:β„€) ^ (p - 1) * ↑p + (-1) ^ p = ↑p * (↑p + 1) * (-1) ^ (p - 1) + (-1) ^ p)
-- (hp5 : 5 ≀ p)
-- (hβ‚€ : ↑p = ↑p + 1 - 1)
-- (h₁ : ↑p ^ p ≑ (↑p + 1 - 1) ^ p [ZMOD (↑p + 1) ^ 2])
(gβ‚€ : 2 ≀ p + 1) :
(Finset.sum (Finset.range (p + 1)) fun m => (↑p + 1) ^ m * (-1:β„€) ^ (p - m) * ↑(choose p m)) =
↑p * (↑p + 1) * (-1) ^ (p - 1) + (-1) ^ p +
Finset.sum (Finset.Ico 2 (p + 1)) fun k => (↑p + 1) ^ k * (-1:β„€) ^ (p - k) * ↑(choose p k) := by
have g₁: 1 ≀ 2 := by norm_num
rw [← Finset.sum_range_add_sum_Ico _ gβ‚€]
rw [← Finset.sum_range_add_sum_Ico _ g₁]
simp
rw [add_comm]
exact hβ‚€
lemma imo_2022_p5_9_11
(p : β„•)
-- (hp5 : 5 ≀ p)
-- (hβ‚€ : ↑p = ↑p + 1 - 1)
(h₁ : ↑p ^ p ≑ (↑p + 1 - 1) ^ p [ZMOD (↑p + 1) ^ 2])
(hβ‚‚ : (↑p + 1 - 1) ^ p =
↑p * (↑p + 1) * (-1:β„€) ^ (p - 1) + (-1) ^ p +
Finset.sum (Finset.Ico 2 (p + 1)) fun k => (↑p + 1) ^ k * (-1:β„€) ^ (p - k) * ↑(choose p k)) :
↑p ^ p ≑ ↑p * (↑p + 1) * (-1) ^ (p - 1) + (-1) ^ p [ZMOD (↑p + 1) ^ 2] := by
have h₃: 0 ≑ (Finset.Ico 2 (p + 1)).sum (fun (k : β„•) => (↑p + 1) ^ k * (-1) ^ (p - k) * ↑(p.choose k))
[ZMOD (↑p + 1) ^ 2] := by
refine Int.modEq_of_dvd ?_
simp
refine Finset.dvd_sum ?_
intros x gβ‚€
have gx: 2 ≀ x := by exact (Finset.mem_Ico.mp gβ‚€).left
rw [mul_assoc]
refine dvd_mul_of_dvd_left ?_ ((-1:β„€) ^ (p - x) * ↑(p.choose x))
refine pow_dvd_pow ((↑p:β„€) + 1) gx
rw [hβ‚‚] at h₁
rw [← add_zero ((↑p:β„€) ^ p)] at h₁
exact Int.ModEq.add_right_cancel h₃ h₁
lemma imo_2022_p5_9_12
(p : β„•) :
-- (hp5 : 5 ≀ p)
-- (hβ‚€ : ↑p = ↑p + 1 - 1)
-- (h₁ : ↑p ^ p ≑ (↑p + 1 - 1) ^ p [ZMOD (↑p + 1) ^ 2])
-- (hβ‚‚ : (↑p + 1 - 1) ^ p =
-- ↑p * (↑p + 1) * (-1:β„€) ^ (p - 1) + (-1) ^ p +
-- Finset.sum (Finset.Ico 2 (p + 1)) fun k => (↑p + 1) ^ k * (-1:β„€) ^ (p - k) * ↑(choose p k)) :
0 ≑ Finset.sum (Finset.Ico 2 (p + 1)) fun k => (↑p + 1) ^ k * (-1) ^ (p - k)
* ↑(choose p k) [ZMOD (↑p + 1) ^ 2] := by
refine Int.modEq_of_dvd ?_
simp
refine Finset.dvd_sum ?_
intros x gβ‚€
have gx: 2 ≀ x := by exact (Finset.mem_Ico.mp gβ‚€).left
rw [mul_assoc]
refine dvd_mul_of_dvd_left ?_ ((-1:β„€) ^ (p - x) * ↑(p.choose x))
refine pow_dvd_pow ((↑p:β„€) + 1) gx
lemma imo_2022_p5_9_13
(p : β„•) :
-- (hp5 : 5 ≀ p)
-- (hβ‚€ : ↑p = ↑p + 1 - 1)
-- (h₁ : ↑p ^ p ≑ (↑p + 1 - 1) ^ p [ZMOD (↑p + 1) ^ 2])
-- (hβ‚‚ : (↑p + 1 - 1) ^ p =
-- ↑p * (↑p + 1) * (-1:β„€) ^ (p - 1) + (-1) ^ p +
-- Finset.sum (Finset.Ico 2 (p + 1)) fun k => (↑p + 1) ^ k * (-1:β„€) ^ (p - k) * ↑(choose p k))
-- (h₃: 0 ≑ Finset.sum (Finset.Ico 2 (p + 1))
-- fun (k:β„•) => (↑p + 1) ^ k * (-1) ^ (p - k) * ↑(choose p k) [ZMOD (↑p + 1) ^ 2]) :
((↑p:β„€) + 1) ^ 2 ∣ Finset.sum (Finset.Ico 2 (p + 1)) fun (k:β„•) => ((↑p:β„€) + 1) ^ k
* (-1:β„€) ^ (p - k) * ↑(choose p k) := by
refine Finset.dvd_sum ?_
intros x gβ‚€
have gx: 2 ≀ x := by exact (Finset.mem_Ico.mp gβ‚€).left
rw [mul_assoc]
refine dvd_mul_of_dvd_left ?_ ((-1:β„€) ^ (p - x) * ↑(p.choose x))
exact pow_dvd_pow ((↑p:β„€) + 1) gx
lemma imo_2022_p5_9_14
(p : β„•)
-- (hp5 : 5 ≀ p)
-- (hβ‚€ : ↑p = ↑p + 1 - 1)
-- (h₁ : ↑p ^ p ≑ (↑p + 1 - 1) ^ p [ZMOD (↑p + 1) ^ 2])
-- (hβ‚‚ : (↑p + 1 - 1) ^ p =
-- ↑p * (↑p + 1) * (-1:β„€) ^ (p - 1) + (-1) ^ p +
-- Finset.sum (Finset.Ico 2 (p + 1)) fun k => (↑p + 1) ^ k * (-1:β„€) ^ (p - k) * ↑(choose p k))
(h₃ : βˆ€ i ∈ Finset.Ico 2 (p + 1), ((↑p:β„€) + 1) ^ 2 ∣ (↑p + 1) ^ i * (-1:β„€) ^ (p - i) * ↑(choose p i)) :
0 ≑ Finset.sum (Finset.Ico 2 (p + 1)) fun k => (↑p + 1) ^ k * (-1) ^ (p - k)
* ↑(choose p k) [ZMOD (↑p + 1) ^ 2] := by
refine Int.modEq_of_dvd ?_
simp
exact Finset.dvd_sum h₃
lemma imo_2022_p5_9_15
(p : β„•)
-- (hp5 : 5 ≀ p)
-- (hβ‚€ : ↑p = ↑p + 1 - 1)
-- (h₁ : ↑p ^ p ≑ (↑p + 1 - 1) ^ p [ZMOD (↑p + 1) ^ 2])
(hβ‚‚ : βˆ€ x ∈ Finset.Ico 2 (p + 1), ((↑p:β„€) + 1) ^ 2 ∣ ((↑p:β„€) + 1) ^ x) :
((↑p:β„€) + 1) ^ 2 ∣ Finset.sum (Finset.Ico 2 (p + 1)) fun k => (↑p + 1) ^ k
* (-1:β„€) ^ (p - k) * ↑(choose p k) := by
refine Finset.dvd_sum ?_
intros x gβ‚€
rw [mul_assoc]
refine dvd_mul_of_dvd_left ?_ ((-1:β„€) ^ (p - x) * ↑(p.choose x))
exact hβ‚‚ x gβ‚€
lemma imo_2022_p5_9_16
(p : β„•) :
-- (hp5 : 5 ≀ p)
-- (hβ‚€ : ↑p = ↑p + 1 - 1)
-- (h₁ : ↑p ^ p ≑ (↑p + 1 - 1) ^ p [ZMOD (↑p + 1) ^ 2])
-- (hβ‚‚ : (↑p + 1 - 1) ^ p =
-- ↑p * (↑p + 1) * (-1:β„€) ^ (p - 1) + (-1) ^ p +
-- Finset.sum (Finset.Ico 2 (p + 1)) fun k => (↑p + 1) ^ k * (-1:β„€) ^ (p - k) * ↑(choose p k)) :
βˆ€ i ∈ Finset.Ico 2 (p + 1), ((↑p:β„€) + 1) ^ 2 ∣ (↑p + 1) ^ i * (-1:β„€) ^ (p - i) * ↑(choose p i) := by
intros x gβ‚€
have gx: 2 ≀ x := by exact (Finset.mem_Ico.mp gβ‚€).left
rw [mul_assoc]
refine dvd_mul_of_dvd_left ?_ ((-1:β„€) ^ (p - x) * ↑(p.choose x))
refine pow_dvd_pow ((↑p:β„€) + 1) gx
lemma imo_2022_p5_9_17
(p : β„•)
-- (hp5 : 5 ≀ p)
-- (hβ‚€ : ↑p = ↑p + 1 - 1)
-- (h₁ : ↑p ^ p ≑ (↑p + 1 - 1) ^ p [ZMOD (↑p + 1) ^ 2])
-- (hβ‚‚ : (↑p + 1 - 1) ^ p =
-- ↑p * (↑p + 1) * (-1:β„€) ^ (p - 1) + (-1) ^ p +
-- Finset.sum (Finset.Ico 2 (p + 1)) fun k => (↑p + 1) ^ k * (-1:β„€) ^ (p - k) * ↑(choose p k))
(x : β„•)
-- (gβ‚€ : x ∈ Finset.Ico 2 (p + 1))
(gx : 2 ≀ x) :
((↑p:β„€) + 1) ^ 2 ∣ (↑p + 1) ^ x * (-1:β„€) ^ (p - x) * ↑(choose p x) := by
rw [mul_assoc]
refine dvd_mul_of_dvd_left ?_ ((-1:β„€) ^ (p - x) * ↑(p.choose x))
refine pow_dvd_pow ((↑p:β„€) + 1) gx
lemma imo_2022_p5_9_18
(p : β„•)
-- (hp5 : 5 ≀ p)
-- (hβ‚€ : ↑p = ↑p + 1 - 1)
-- (h₁ : ↑p ^ p ≑ (↑p + 1 - 1) ^ p [ZMOD (↑p + 1) ^ 2])
-- (hβ‚‚ : (↑p + 1 - 1) ^ p =
-- ↑p * (↑p + 1) * (-1:β„€) ^ (p - 1) + (-1) ^ p +
-- Finset.sum (Finset.Ico 2 (p + 1)) fun k => (↑p + 1) ^ k * (-1:β„€) ^ (p - k) * ↑(choose p k))
(x : β„•)
(gβ‚€ : x ∈ Finset.Ico 2 (p + 1)) :
((↑p:β„€) + 1) ^ 2 ∣ ((↑p:β„€) + 1) ^ x := by
refine pow_dvd_pow ((↑p:β„€) + 1) ?_
exact (Finset.mem_Ico.mp gβ‚€).left
lemma imo_2022_p5_9_19
(p : β„•)
-- (hp5 : 5 ≀ p)
-- (hβ‚€ : ↑p = ↑p + 1 - 1)
(h₁ : ↑p ^ p ≑ (↑p + 1 - 1) ^ p [ZMOD (↑p + 1) ^ 2])
(hβ‚‚ : (↑p + 1 - 1) ^ p =
↑p * (↑p + 1) * (-1:β„€) ^ (p - 1) + (-1) ^ p +
Finset.sum (Finset.Ico 2 (p + 1)) fun k => (↑p + 1) ^ k * (-1:β„€) ^ (p - k) * ↑(choose p k))
(h₃ : 0 ≑ Finset.sum (Finset.Ico 2 (p + 1)) fun k => (↑p + 1) ^ k * (-1) ^ (p - k) * ↑(choose p k) [ZMOD (↑p + 1) ^ 2]) :
↑p ^ p ≑ ↑p * (↑p + 1) * (-1) ^ (p - 1) + (-1) ^ p [ZMOD (↑p + 1) ^ 2] := by
rw [hβ‚‚] at h₁
rw [← add_zero ((↑p:β„€) ^ p)] at h₁
exact Int.ModEq.add_right_cancel h₃ h₁
lemma imo_2022_p5_10
(p: β„•)
(hp: Nat.Prime p)
(hp5: 5 ≀ p)
-- (hp7: 7 ≀ p)
(hβ‚€: (p + 1) ^ 2 ∣ p ^ p - p) :
False := by
have h₁: ((↑p^p - ↑p):β„€) ≑ (↑(p.choose 1) * ↑(p + 1) * (-1:β„€)^(p-1) + (-1:β„€)^p) - ↑p
[ZMOD ↑(p+1)^2] := by
refine Int.ModEq.sub_right (↑p) ?_
simp
exact imo_2022_p5_9 p hp5
have gpo: Odd p := by
refine Nat.Prime.odd_of_ne_two hp ?_
linarith [hp5]
have gpe: Even (p - 1) := by
refine hp.even_sub_one ?_
linarith [hp5]
have g₁: (-1:β„€) ^ (p - 1) = 1 := by exact Even.neg_one_pow gpe
have gβ‚‚: (-1:β„€) ^ (p) = -1 := by exact Odd.neg_one_pow gpo
rw [g₁,gβ‚‚] at h₁
simp at h₁
-- norm_cast at h₁
have hβ‚‚: (p ^ p - p) ≑ (p * (p + 1)) - 1 - p [MOD ((p + 1) ^ 2)] := by
refine Int.natCast_modEq_iff.mp ?_
have g₃: p ≀ p^p := by
refine Nat.le_self_pow (by linarith) _
rw [Nat.cast_sub g₃]
have gβ‚„: p ≀ p * (p + 1) - 1 := by
rw [mul_add]
simp
rw [add_comm, Nat.add_sub_assoc]
simp
rw [← pow_two]
refine Nat.one_le_pow 2 p (by linarith)
rw [Nat.cast_sub gβ‚„]
have gβ‚…: 1 ≀ p * (p + 1) := by
rw [← mul_one (p * (p + 1))]
refine Nat.le_mul_of_pos_left ?_ ?_
refine Nat.mul_pos (by linarith) (by linarith)
rw [Nat.cast_sub gβ‚…]
rw [← sub_eq_add_neg] at h₁
norm_cast
norm_cast at h₁
have h₃: p * (p + 1) - 1 - p = p^2 - 1 := by
rw [Nat.sub_sub, mul_add]
simp
rw [← pow_two]
exact Nat.add_sub_add_right (p^2) p 1
rw [h₃] at hβ‚‚
clear h₃ gpo gpe g₁ gβ‚‚
-- now derive a line of contradictions from hβ‚€
have hc₁: (p ^ p - p) ≑ 0 [MOD (p+1)^2] := by exact modEq_zero_iff_dvd.mpr hβ‚€
-- mix the contradiction with what we had in hβ‚‚
have hβ‚„: p ^ 2 - 1 ≑ 0 [MOD (p+1)^2] := by
apply Nat.ModEq.symm at hβ‚‚
exact Nat.ModEq.trans hβ‚‚ hc₁
have hβ‚…: p - 1 ≑ 0 [MOD (p+1)] := by
rw [pow_two] at hβ‚„
have gβ‚€: p^2 - 1^2 = (p-1) * (p+1) := by
rw [mul_comm]
exact Nat.sq_sub_sq p 1
simp at gβ‚€
rw [gβ‚€] at hβ‚„
have g₁: p + 1 β‰  0 := by linarith
refine Nat.ModEq.mul_right_cancel' g₁ ?_
rw [zero_mul]
exact hβ‚„
have h₆: p - 1 ≀ 0 := by
refine Nat.ModEq.le_of_lt_add hβ‚… ?_
simp
rw [← succ_eq_add_one]
refine Nat.sub_lt_succ p 1
have h₇: 0 < p - 1 := by
simp
linarith
linarith [h₆,h₇]
lemma imo_2022_p5_10_1
(p : β„•)
-- (hp : Nat.Prime p)
(hp5 : 5 ≀ p) :
-- (hβ‚€ : (p + 1) ^ 2 ∣ p ^ p - p) :
↑p ^ p - ↑p ≑ ↑(choose p 1) * ↑(p + 1) * (-1) ^ (p - 1) + (-1) ^ p - ↑p [ZMOD ↑(p + 1) ^ 2] := by
refine Int.ModEq.sub_right (↑p) ?_
simp
exact imo_2022_p5_9 p hp5
lemma imo_2022_p5_10_2
(p : β„•)
(hp : Nat.Prime p)
(hp5 : 5 ≀ p)
(hβ‚€ : (p + 1) ^ 2 ∣ p ^ p - p)
(h₁ : ↑p ^ p - ↑p ≑ ↑(choose p 1) * ↑(p + 1) * (-1) ^ (p - 1) + (-1) ^ p - ↑p [ZMOD ↑(p + 1) ^ 2]) :
False := by
have gpo: Odd p := by
refine Nat.Prime.odd_of_ne_two hp ?_
linarith [hp5]
have gpe: Even (p - 1) := by
refine hp.even_sub_one ?_
linarith [hp5]
have g₁: (-1:β„€) ^ (p - 1) = 1 := by exact Even.neg_one_pow gpe
have gβ‚‚: (-1:β„€) ^ (p) = -1 := by exact Odd.neg_one_pow gpo
rw [g₁,gβ‚‚] at h₁
simp at h₁
-- norm_cast at h₁
have hβ‚‚: (p ^ p - p) ≑ (p * (p + 1)) - 1 - p [MOD ((p + 1) ^ 2)] := by
refine Int.natCast_modEq_iff.mp ?_
have g₃: p ≀ p^p := by
refine Nat.le_self_pow (by linarith) _
rw [Nat.cast_sub g₃]
have gβ‚„: p ≀ p * (p + 1) - 1 := by
rw [mul_add]
simp
rw [add_comm, Nat.add_sub_assoc]
simp
rw [← pow_two]
refine Nat.one_le_pow 2 p (by linarith)
rw [Nat.cast_sub gβ‚„]
have gβ‚…: 1 ≀ p * (p + 1) := by
rw [← mul_one (p * (p + 1))]
refine Nat.le_mul_of_pos_left ?_ ?_
refine Nat.mul_pos (by linarith) (by linarith)
rw [Nat.cast_sub gβ‚…]
rw [← sub_eq_add_neg] at h₁
norm_cast
norm_cast at h₁
have h₃: p * (p + 1) - 1 - p = p^2 - 1 := by
rw [Nat.sub_sub, mul_add]
simp
rw [← pow_two]
exact Nat.add_sub_add_right (p^2) p 1
rw [h₃] at hβ‚‚
clear h₃ gpo gpe g₁ gβ‚‚
-- now derive a line of contradictions from hβ‚€
have hc₁: (p ^ p - p) ≑ 0 [MOD (p+1)^2] := by exact modEq_zero_iff_dvd.mpr hβ‚€
-- mix the contradiction with what we had in hβ‚‚
have hβ‚„: p ^ 2 - 1 ≑ 0 [MOD (p+1)^2] := by
apply Nat.ModEq.symm at hβ‚‚
exact Nat.ModEq.trans hβ‚‚ hc₁
have hβ‚…: p - 1 ≑ 0 [MOD (p+1)] := by
rw [pow_two] at hβ‚„
have gβ‚€: p^2 - 1^2 = (p-1) * (p+1) := by
rw [mul_comm]
exact Nat.sq_sub_sq p 1
simp at gβ‚€
rw [gβ‚€] at hβ‚„
have g₁: p + 1 β‰  0 := by linarith
refine Nat.ModEq.mul_right_cancel' g₁ ?_
rw [zero_mul]
exact hβ‚„
have h₆: p - 1 ≀ 0 := by
refine Nat.ModEq.le_of_lt_add hβ‚… ?_
simp
rw [← succ_eq_add_one]
refine Nat.sub_lt_succ p 1
have h₇: 0 < p - 1 := by
simp
linarith
linarith [h₆,h₇]
lemma imo_2022_p5_10_3
(p : β„•)
(hp : Nat.Prime p)
(hp5 : 5 ≀ p) :
-- (hβ‚€ : (p + 1) ^ 2 ∣ p ^ p - p)
-- (h₁ : ↑p ^ p - ↑p ≑ ↑(choose p 1) * ↑(p + 1) * (-1) ^ (p - 1) + (-1) ^ p - ↑p [ZMOD ↑(p + 1) ^ 2]) :
Odd p := by
refine Nat.Prime.odd_of_ne_two hp ?_
linarith [hp5]
lemma imo_2022_p5_10_4
(p : β„•)
(hp : Nat.Prime p)
(hp5 : 5 ≀ p)
(hβ‚€ : (p + 1) ^ 2 ∣ p ^ p - p)
(h₁ : ↑p ^ p - ↑p ≑ ↑(choose p 1) * ↑(p + 1) * (-1) ^ (p - 1) + (-1) ^ p - ↑p [ZMOD ↑(p + 1) ^ 2])
(gpo : Odd p) :
False := by
have gpe: Even (p - 1) := by
refine hp.even_sub_one ?_
linarith [hp5]
have g₁: (-1:β„€) ^ (p - 1) = 1 := by exact Even.neg_one_pow gpe
have gβ‚‚: (-1:β„€) ^ (p) = -1 := by exact Odd.neg_one_pow gpo
rw [g₁,gβ‚‚] at h₁
simp at h₁
-- norm_cast at h₁
have hβ‚‚: (p ^ p - p) ≑ (p * (p + 1)) - 1 - p [MOD ((p + 1) ^ 2)] := by
refine Int.natCast_modEq_iff.mp ?_
have g₃: p ≀ p^p := by
refine Nat.le_self_pow (by linarith) _
rw [Nat.cast_sub g₃]
have gβ‚„: p ≀ p * (p + 1) - 1 := by
rw [mul_add]
simp
rw [add_comm, Nat.add_sub_assoc]
simp
rw [← pow_two]
refine Nat.one_le_pow 2 p (by linarith)
rw [Nat.cast_sub gβ‚„]
have gβ‚…: 1 ≀ p * (p + 1) := by
rw [← mul_one (p * (p + 1))]
refine Nat.le_mul_of_pos_left ?_ ?_
refine Nat.mul_pos (by linarith) (by linarith)
rw [Nat.cast_sub gβ‚…]
rw [← sub_eq_add_neg] at h₁
norm_cast
norm_cast at h₁
have h₃: p * (p + 1) - 1 - p = p^2 - 1 := by
rw [Nat.sub_sub, mul_add]
simp
rw [← pow_two]
exact Nat.add_sub_add_right (p^2) p 1
rw [h₃] at hβ‚‚
clear h₃ gpo gpe g₁ gβ‚‚
-- now derive a line of contradictions from hβ‚€
have hc₁: (p ^ p - p) ≑ 0 [MOD (p+1)^2] := by exact modEq_zero_iff_dvd.mpr hβ‚€
-- mix the contradiction with what we had in hβ‚‚
have hβ‚„: p ^ 2 - 1 ≑ 0 [MOD (p+1)^2] := by
apply Nat.ModEq.symm at hβ‚‚
exact Nat.ModEq.trans hβ‚‚ hc₁
have hβ‚…: p - 1 ≑ 0 [MOD (p+1)] := by
rw [pow_two] at hβ‚„
have gβ‚€: p^2 - 1^2 = (p-1) * (p+1) := by
rw [mul_comm]
exact Nat.sq_sub_sq p 1
simp at gβ‚€
rw [gβ‚€] at hβ‚„
have g₁: p + 1 β‰  0 := by linarith
refine Nat.ModEq.mul_right_cancel' g₁ ?_
rw [zero_mul]
exact hβ‚„
have h₆: p - 1 ≀ 0 := by
refine Nat.ModEq.le_of_lt_add hβ‚… ?_
simp
rw [← succ_eq_add_one]
refine Nat.sub_lt_succ p 1
have h₇: 0 < p - 1 := by
simp
linarith
linarith [h₆,h₇]
lemma imo_2022_p5_10_5
(p : β„•)
(hp : Nat.Prime p)
(hp5 : 5 ≀ p) :
-- (hβ‚€ : (p + 1) ^ 2 ∣ p ^ p - p)
-- (h₁ : ↑p ^ p - ↑p ≑ ↑(choose p 1) * ↑(p + 1) * (-1) ^ (p - 1) + (-1) ^ p - ↑p [ZMOD ↑(p + 1) ^ 2])
-- (gpo : Odd p) :
Even (p - 1) := by
refine hp.even_sub_one ?_
linarith [hp5]
lemma imo_2022_p5_10_6
(p : β„•)
-- (hp : Nat.Prime p)
(hp5 : 5 ≀ p)
(hβ‚€ : (p + 1) ^ 2 ∣ p ^ p - p)
(h₁ : ↑p ^ p - ↑p ≑ ↑(choose p 1) * ↑(p + 1) * (-1) ^ (p - 1) + (-1) ^ p - ↑p [ZMOD ↑(p + 1) ^ 2])
(gpo : Odd p)
(gpe : Even (p - 1)) :
False := by
have g₁: (-1:β„€) ^ (p - 1) = 1 := by exact Even.neg_one_pow gpe
have gβ‚‚: (-1:β„€) ^ (p) = -1 := by exact Odd.neg_one_pow gpo
rw [g₁,gβ‚‚] at h₁
simp at h₁
have hβ‚‚: (p ^ p - p) ≑ (p * (p + 1)) - 1 - p [MOD ((p + 1) ^ 2)] := by
refine Int.natCast_modEq_iff.mp ?_
have g₃: p ≀ p^p := by
refine Nat.le_self_pow (by linarith) _
rw [Nat.cast_sub g₃]
have gβ‚„: p ≀ p * (p + 1) - 1 := by
rw [mul_add]
simp
rw [add_comm, Nat.add_sub_assoc]
simp
rw [← pow_two]
refine Nat.one_le_pow 2 p (by linarith)
rw [Nat.cast_sub gβ‚„]
have gβ‚…: 1 ≀ p * (p + 1) := by
rw [← mul_one (p * (p + 1))]
refine Nat.le_mul_of_pos_left ?_ ?_
refine Nat.mul_pos (by linarith) (by linarith)
rw [Nat.cast_sub gβ‚…]
rw [← sub_eq_add_neg] at h₁
norm_cast
norm_cast at h₁
have h₃: p * (p + 1) - 1 - p = p^2 - 1 := by
rw [Nat.sub_sub, mul_add]
simp
rw [← pow_two]
exact Nat.add_sub_add_right (p^2) p 1
rw [h₃] at hβ‚‚
clear h₃ gpo gpe g₁ gβ‚‚
-- now derive a line of contradictions from hβ‚€
have hc₁: (p ^ p - p) ≑ 0 [MOD (p+1)^2] := by exact modEq_zero_iff_dvd.mpr hβ‚€
-- mix the contradiction with what we had in hβ‚‚
have hβ‚„: p ^ 2 - 1 ≑ 0 [MOD (p+1)^2] := by
apply Nat.ModEq.symm at hβ‚‚
exact Nat.ModEq.trans hβ‚‚ hc₁
have hβ‚…: p - 1 ≑ 0 [MOD (p+1)] := by
rw [pow_two] at hβ‚„
have gβ‚€: p^2 - 1^2 = (p-1) * (p+1) := by
rw [mul_comm]
exact Nat.sq_sub_sq p 1
simp at gβ‚€
rw [gβ‚€] at hβ‚„
have g₁: p + 1 β‰  0 := by linarith
refine Nat.ModEq.mul_right_cancel' g₁ ?_
rw [zero_mul]
exact hβ‚„
have h₆: p - 1 ≀ 0 := by
refine Nat.ModEq.le_of_lt_add hβ‚… ?_
simp
rw [← succ_eq_add_one]
refine Nat.sub_lt_succ p 1
have h₇: 0 < p - 1 := by
simp
linarith
linarith [h₆,h₇]
lemma imo_2022_p5_10_7
(p : β„•)
-- (hp : Nat.Prime p)
(hp5 : 5 ≀ p)
(hβ‚€ : (p + 1) ^ 2 ∣ p ^ p - p)
(h₁ : ↑p ^ p - ↑p ≑ ↑(choose p 1) * ↑(p + 1) * (-1) ^ (p - 1) + (-1) ^ p - ↑p [ZMOD ↑(p + 1) ^ 2])
(gpo : Odd p)
(gpe : Even (p - 1))
(g₁ : (-1) ^ (p - 1) = 1)
(gβ‚‚ : (-1) ^ p = -1) :
False := by
rw [g₁,gβ‚‚] at h₁
simp at h₁
have hβ‚‚: (p ^ p - p) ≑ (p * (p + 1)) - 1 - p [MOD ((p + 1) ^ 2)] := by
refine Int.natCast_modEq_iff.mp ?_
have g₃: p ≀ p^p := by
refine Nat.le_self_pow (by linarith) _
rw [Nat.cast_sub g₃]
have gβ‚„: p ≀ p * (p + 1) - 1 := by
rw [mul_add]
simp
rw [add_comm, Nat.add_sub_assoc]
simp
rw [← pow_two]
refine Nat.one_le_pow 2 p (by linarith)
rw [Nat.cast_sub gβ‚„]
have gβ‚…: 1 ≀ p * (p + 1) := by
rw [← mul_one (p * (p + 1))]
refine Nat.le_mul_of_pos_left ?_ ?_
refine Nat.mul_pos (by linarith) (by linarith)
rw [Nat.cast_sub gβ‚…]
rw [← sub_eq_add_neg] at h₁
norm_cast
norm_cast at h₁
have h₃: p * (p + 1) - 1 - p = p^2 - 1 := by
rw [Nat.sub_sub, mul_add]
simp
rw [← pow_two]
exact Nat.add_sub_add_right (p^2) p 1
rw [h₃] at hβ‚‚
clear h₃ gpo gpe g₁ gβ‚‚
-- now derive a line of contradictions from hβ‚€
have hc₁: (p ^ p - p) ≑ 0 [MOD (p+1)^2] := by exact modEq_zero_iff_dvd.mpr hβ‚€
-- mix the contradiction with what we had in hβ‚‚
have hβ‚„: p ^ 2 - 1 ≑ 0 [MOD (p+1)^2] := by
apply Nat.ModEq.symm at hβ‚‚
exact Nat.ModEq.trans hβ‚‚ hc₁
have hβ‚…: p - 1 ≑ 0 [MOD (p+1)] := by
rw [pow_two] at hβ‚„
have gβ‚€: p^2 - 1^2 = (p-1) * (p+1) := by
rw [mul_comm]
exact Nat.sq_sub_sq p 1
simp at gβ‚€
rw [gβ‚€] at hβ‚„
have g₁: p + 1 β‰  0 := by linarith
refine Nat.ModEq.mul_right_cancel' g₁ ?_
rw [zero_mul]
exact hβ‚„
have h₆: p - 1 ≀ 0 := by
refine Nat.ModEq.le_of_lt_add hβ‚… ?_
simp
rw [← succ_eq_add_one]
refine Nat.sub_lt_succ p 1
have h₇: 0 < p - 1 := by
simp
linarith
linarith [h₆,h₇]
lemma imo_2022_p5_10_8
(p : β„•)
-- (hp : Nat.Prime p)
(hp5 : 5 ≀ p) :
-- (hβ‚€ : (p + 1) ^ 2 ∣ p ^ p - p)
-- (h₁ : ↑p ^ p - ↑p ≑ ↑(choose p 1) * ↑(p + 1) * (-1) ^ (p - 1) + (-1:β„€) ^ p - ↑p [ZMOD ↑(p + 1) ^ 2])
-- (gpo : Odd p)
-- (gpe : Even (p - 1))
-- (g₁ : (-1) ^ (p - 1) = 1)
-- (gβ‚‚ : (-1) ^ p = -1) :
((↑p^p - ↑p):β„€) ≑ (↑(p.choose 1) * ↑(p + 1) * (-1:β„€)^(p-1) + (-1:β„€)^p) - ↑p [ZMOD ↑(p+1)^2] := by
refine Int.ModEq.sub_right (↑p) ?_
simp
exact imo_2022_p5_9 p hp5
lemma imo_2022_p5_10_9
(p : β„•)
-- (hp : Nat.Prime p)
(hp5 : 5 ≀ p)
(hβ‚€ : (p + 1) ^ 2 ∣ p ^ p - p)
(gpo : Odd p)
(gpe : Even (p - 1))
(g₁ : (-1) ^ (p - 1) = 1)
(gβ‚‚ : (-1) ^ p = -1)
(h₁ : ↑p ^ p - ↑p ≑ ↑p * (↑p + 1) + -1 - ↑p [ZMOD (↑p + 1) ^ 2]) :
False := by
have hβ‚‚: (p ^ p - p) ≑ (p * (p + 1)) - 1 - p [MOD ((p + 1) ^ 2)] := by
refine Int.natCast_modEq_iff.mp ?_
have g₃: p ≀ p^p := by
refine Nat.le_self_pow (by linarith) _
rw [Nat.cast_sub g₃]
have gβ‚„: p ≀ p * (p + 1) - 1 := by
rw [mul_add]
simp
rw [add_comm, Nat.add_sub_assoc]
simp
rw [← pow_two]
refine Nat.one_le_pow 2 p (by linarith)
rw [Nat.cast_sub gβ‚„]
have gβ‚…: 1 ≀ p * (p + 1) := by
rw [← mul_one (p * (p + 1))]
refine Nat.le_mul_of_pos_left ?_ ?_
refine Nat.mul_pos (by linarith) (by linarith)
rw [Nat.cast_sub gβ‚…]
rw [← sub_eq_add_neg] at h₁
norm_cast
norm_cast at h₁
have h₃: p * (p + 1) - 1 - p = p^2 - 1 := by
rw [Nat.sub_sub, mul_add]
simp
rw [← pow_two]
exact Nat.add_sub_add_right (p^2) p 1
rw [h₃] at hβ‚‚
clear h₃ gpo gpe g₁ gβ‚‚
-- now derive a line of contradictions from hβ‚€
have hc₁: (p ^ p - p) ≑ 0 [MOD (p+1)^2] := by exact modEq_zero_iff_dvd.mpr hβ‚€
-- mix the contradiction with what we had in hβ‚‚
have hβ‚„: p ^ 2 - 1 ≑ 0 [MOD (p+1)^2] := by
apply Nat.ModEq.symm at hβ‚‚
exact Nat.ModEq.trans hβ‚‚ hc₁
have hβ‚…: p - 1 ≑ 0 [MOD (p+1)] := by
rw [pow_two] at hβ‚„
have gβ‚€: p^2 - 1^2 = (p-1) * (p+1) := by
rw [mul_comm]
exact Nat.sq_sub_sq p 1
simp at gβ‚€
rw [gβ‚€] at hβ‚„
have g₁: p + 1 β‰  0 := by linarith
refine Nat.ModEq.mul_right_cancel' g₁ ?_
rw [zero_mul]
exact hβ‚„
have h₆: p - 1 ≀ 0 := by
refine Nat.ModEq.le_of_lt_add hβ‚… ?_
simp
rw [← succ_eq_add_one]
refine Nat.sub_lt_succ p 1
have h₇: 0 < p - 1 := by
simp
linarith
linarith [h₆,h₇]
lemma imo_2022_p5_10_10
(p : β„•)
-- (hp : Nat.Prime p)
(hp5 : 5 ≀ p)
-- (hβ‚€ : (p + 1) ^ 2 ∣ p ^ p - p)
-- (gpo : Odd p)
-- (gpe : Even (p - 1))
-- (g₁ : (-1) ^ (p - 1) = 1)
-- (gβ‚‚ : (-1) ^ p = -1)
(h₁ : ↑p ^ p - ↑p ≑ ↑p * (↑p + 1) + -1 - ↑p [ZMOD (↑p + 1) ^ 2]) :
p ^ p - p ≑ p * (p + 1) - 1 - p [MOD (p + 1) ^ 2] := by
refine Int.natCast_modEq_iff.mp ?_
have g₃: p ≀ p^p := by
refine Nat.le_self_pow (by linarith) _
rw [Nat.cast_sub g₃]
have gβ‚„: p ≀ p * (p + 1) - 1 := by
rw [mul_add]
simp
rw [add_comm, Nat.add_sub_assoc]
simp
rw [← pow_two]
refine Nat.one_le_pow 2 p (by linarith)
rw [Nat.cast_sub gβ‚„]
have gβ‚…: 1 ≀ p * (p + 1) := by
rw [← mul_one (p * (p + 1))]
refine Nat.le_mul_of_pos_left ?_ ?_
refine Nat.mul_pos (by linarith) (by linarith)
rw [Nat.cast_sub gβ‚…]
rw [← sub_eq_add_neg] at h₁
norm_cast
norm_cast at h₁
lemma imo_2022_p5_10_11
(p : β„•)
-- (hp : Nat.Prime p)
(hp5 : 5 ≀ p)
-- (hβ‚€ : (p + 1) ^ 2 ∣ p ^ p - p)
-- (gpo : Odd p)
-- (gpe : Even (p - 1))
-- (g₁ : (-1) ^ (p - 1) = 1)
-- (gβ‚‚ : (-1) ^ p = -1)
(h₁ : ↑p ^ p - ↑p ≑ ↑p * (↑p + 1) + -1 - ↑p [ZMOD (↑p + 1) ^ 2]) :
↑(p ^ p - p) ≑ ↑(p * (p + 1) - 1 - p) [ZMOD ↑(((↑p:β„€) + 1) ^ 2)] := by
have g₃: p ≀ p^p := by
refine Nat.le_self_pow (by linarith) _
rw [Nat.cast_sub g₃]
have gβ‚„: p ≀ p * (p + 1) - 1 := by
rw [mul_add]
simp
rw [add_comm, Nat.add_sub_assoc]
simp
rw [← pow_two]
refine Nat.one_le_pow 2 p (by linarith)
rw [Nat.cast_sub gβ‚„]
have gβ‚…: 1 ≀ p * (p + 1) := by
rw [← mul_one (p * (p + 1))]
refine Nat.le_mul_of_pos_left ?_ ?_
refine Nat.mul_pos (by linarith) (by linarith)
rw [Nat.cast_sub gβ‚…]
rw [← sub_eq_add_neg] at h₁
norm_cast
norm_cast at h₁
lemma imo_2022_p5_10_12
(p : β„•)
-- (hp : Nat.Prime p)
(hp5 : 5 ≀ p)
-- (hβ‚€ : (p + 1) ^ 2 ∣ p ^ p - p)
-- (gpo : Odd p)
-- (gpe : Even (p - 1))
-- (g₁ : (-1) ^ (p - 1) = 1)
-- (gβ‚‚ : (-1) ^ p = -1)
(h₁ : ↑p ^ p - ↑p ≑ ↑p * (↑p + 1) + -1 - ↑p [ZMOD (↑p + 1) ^ 2])
(g₃ : p ≀ p ^ p) :
↑(p ^ p - p) ≑ ↑(p * (p + 1) - 1 - p) [ZMOD ↑(((↑p:β„€) + 1) ^ 2)] := by
have gβ‚„: p ≀ p * (p + 1) - 1 := by
rw [mul_add]
simp
rw [add_comm, Nat.add_sub_assoc]
simp
rw [← pow_two]
refine Nat.one_le_pow 2 p (by linarith)
rw [Nat.cast_sub gβ‚„]
have gβ‚…: 1 ≀ p * (p + 1) := by
rw [← mul_one (p * (p + 1))]
refine Nat.le_mul_of_pos_left ?_ ?_
refine Nat.mul_pos (by linarith) (by linarith)
rw [Nat.cast_sub gβ‚…]
rw [← sub_eq_add_neg] at h₁
norm_cast
norm_cast at h₁
lemma imo_2022_p5_10_13
(p : β„•)
-- (hp : Nat.Prime p)
(hp5 : 5 ≀ p)
-- (hβ‚€ : (p + 1) ^ 2 ∣ p ^ p - p)
-- (gpo : Odd p)
-- (gpe : Even (p - 1))
-- (g₁ : (-1) ^ (p - 1) = 1)
-- (gβ‚‚ : (-1) ^ p = -1)
(h₁ : ↑p ^ p - ↑p ≑ ↑p * (↑p + 1) + -1 - ↑p [ZMOD (↑p + 1) ^ 2])
(g₃ : p ≀ p ^ p)
(gβ‚„ : p ≀ p * (p + 1) - 1) :
p ^ p - p ≑ p * (p + 1) - 1 - p [MOD (p + 1) ^ 2] := by
refine Int.natCast_modEq_iff.mp ?_
rw [Nat.cast_sub g₃]
rw [Nat.cast_sub gβ‚„]
have gβ‚…: 1 ≀ p * (p + 1) := by
rw [← mul_one (p * (p + 1))]
refine Nat.le_mul_of_pos_left ?_ ?_
refine Nat.mul_pos (by linarith) (by linarith)
rw [Nat.cast_sub gβ‚…]
rw [← sub_eq_add_neg] at h₁
norm_cast
norm_cast at h₁
lemma imo_2022_p5_10_14
(p : β„•)
-- (hp : Nat.Prime p)
(hp5 : 5 ≀ p)
-- (hβ‚€ : (p + 1) ^ 2 ∣ p ^ p - p)
-- (gpo : Odd p)
-- (gpe : Even (p - 1))
-- (g₁ : (-1) ^ (p - 1) = 1)
-- (gβ‚‚ : (-1) ^ p = -1)
(h₁ : ↑p ^ p - ↑p ≑ ↑p * (↑p + 1) + -1 - ↑p [ZMOD (↑p + 1) ^ 2])
(g₃ : p ≀ p ^ p) :
↑(p ^ p) - ↑p ≑ ↑(p * (p + 1) - 1 - p) [ZMOD ↑(((↑p:β„€) + 1) ^ 2)] := by
have gβ‚„: p ≀ p * (p + 1) - 1 := by
rw [mul_add]
simp
rw [add_comm, Nat.add_sub_assoc]
simp
rw [← pow_two]
refine Nat.one_le_pow 2 p (by linarith)
rw [Nat.cast_sub gβ‚„]
have gβ‚…: 1 ≀ p * (p + 1) := by
rw [← mul_one (p * (p + 1))]
refine Nat.le_mul_of_pos_left ?_ ?_
refine Nat.mul_pos (by linarith) (by linarith)
rw [Nat.cast_sub gβ‚…]
rw [← sub_eq_add_neg] at h₁
norm_cast
norm_cast at h₁
lemma imo_2022_p5_10_15
(p : β„•)
-- (hp : Nat.Prime p)
(hp5 : 5 ≀ p) :
-- (hβ‚€ : (p + 1) ^ 2 ∣ p ^ p - p)
-- (gpo : Odd p)
-- (gpe : Even (p - 1))
-- (g₁ : (-1) ^ (p - 1) = 1)
-- (gβ‚‚ : (-1) ^ p = -1)
-- (h₁ : ↑p ^ p - ↑p ≑ ↑p * (↑p + 1) + -1 - ↑p [ZMOD (↑p + 1) ^ 2])
-- (g₃ : p ≀ p ^ p) :
p ≀ p * (p + 1) - 1 := by
rw [mul_add]
simp
rw [add_comm, Nat.add_sub_assoc]
simp
rw [← pow_two]
refine Nat.one_le_pow 2 p (by linarith)
lemma imo_2022_p5_10_16
(p : β„•)
-- (hp : Nat.Prime p)
(hp5 : 5 ≀ p)
-- (hβ‚€ : (p + 1) ^ 2 ∣ p ^ p - p)
-- (gpo : Odd p)
-- (gpe : Even (p - 1))
-- (g₁ : (-1) ^ (p - 1) = 1)
-- (gβ‚‚ : (-1) ^ p = -1)
(h₁ : ↑p ^ p - ↑p ≑ ↑p * (↑p + 1) + -1 - ↑p [ZMOD (↑p + 1) ^ 2])
(g₃ : p ≀ p ^ p)
(gβ‚„ : p ≀ p * (p + 1) - 1) :
↑(p ^ p) - ↑p ≑ ↑(p * (p + 1) - 1 - p) [ZMOD ↑(((↑p:β„€) + 1) ^ 2)] := by
rw [Nat.cast_sub gβ‚„]
have gβ‚…: 1 ≀ p * (p + 1) := by
rw [← mul_one (p * (p + 1))]
refine Nat.le_mul_of_pos_left ?_ ?_
refine Nat.mul_pos (by linarith) (by linarith)
rw [Nat.cast_sub gβ‚…]
rw [← sub_eq_add_neg] at h₁
norm_cast
norm_cast at h₁
lemma imo_2022_p5_10_17
(p : β„•)
-- (hp : Nat.Prime p)
(hp5 : 5 ≀ p) :
-- (hβ‚€ : (p + 1) ^ 2 ∣ p ^ p - p)
-- (gpo : Odd p)
-- (gpe : Even (p - 1))
-- (g₁ : (-1) ^ (p - 1) = 1)
-- (gβ‚‚ : (-1) ^ p = -1)
-- (h₁ : ↑p ^ p - ↑p ≑ ↑p * (↑p + 1) + -1 - ↑p [ZMOD (↑p + 1) ^ 2])
-- (g₃ : p ≀ p ^ p)
-- (gβ‚„ : p ≀ p * (p + 1) - 1) :
1 ≀ p * (p + 1) := by
rw [← mul_one (p * (p + 1))]
refine Nat.le_mul_of_pos_left ?_ ?_
refine Nat.mul_pos (by linarith) (by linarith)
lemma imo_2022_p5_10_18
(p : β„•)
-- (hp : Nat.Prime p)
(hp5 : 5 ≀ p) :
-- (hβ‚€ : (p + 1) ^ 2 ∣ p ^ p - p)
-- (gpo : Odd p)
-- (gpe : Even (p - 1))
-- (g₁ : (-1) ^ (p - 1) = 1)
-- (gβ‚‚ : (-1) ^ p = -1)
-- (h₁ : ↑p ^ p - ↑p ≑ ↑p * (↑p + 1) + -1 - ↑p [ZMOD (↑p + 1) ^ 2])
-- (g₃ : p ≀ p ^ p)
-- (gβ‚„ : p ≀ p * (p + 1) - 1) :
1 ≀ p * (p + 1) - 27 := by
have hβ‚‚: 6 ≀ (p + 1) := by
linarith
have h₃: 5 * 6 ≀ p * (p + 1) := by
exact Nat.mul_le_mul hp5 hβ‚‚
norm_num at h₃
have hβ‚„: 30 - 27 ≀ p * (p + 1) - 27 := by
exact Nat.sub_le_sub_right h₃ 27
norm_num at hβ‚„
exact le_trans (by linarith) hβ‚„
lemma imo_2022_p5_10_19
(p : β„•)
-- (hp : Nat.Prime p)
-- (hp5 : 5 ≀ p)
-- (hβ‚€ : (p + 1) ^ 2 ∣ p ^ p - p)
-- (gpo : Odd p)
-- (gpe : Even (p - 1))
-- (g₁ : (-1) ^ (p - 1) = 1)
-- (gβ‚‚ : (-1) ^ p = -1)
(h₁ : ↑p ^ p - ↑p ≑ ↑p * (↑p + 1) + -1 - ↑p [ZMOD (↑p + 1) ^ 2])
(g₃ : p ≀ p ^ p)
(gβ‚„ : p ≀ p * (p + 1) - 1)
(gβ‚… : 1 ≀ p * (p + 1)) :
↑(p ^ p) - ↑p ≑ ↑(p * (p + 1) - 1) - ↑p [ZMOD ↑(((↑p:β„€) + 1) ^ 2)] := by
rw [Nat.cast_sub gβ‚…]
rw [← sub_eq_add_neg] at h₁
norm_cast
norm_cast at h₁
lemma imo_2022_p5_10_20
(p : β„•)
-- (hp : Nat.Prime p)
(hp5 : 5 ≀ p)
(hβ‚€ : (p + 1) ^ 2 ∣ p ^ p - p)
(gpo : Odd p)
(gpe : Even (p - 1))
(g₁ : (-1) ^ (p - 1) = 1)
(gβ‚‚ : (-1) ^ p = -1)
-- (h₁ : ↑p ^ p - ↑p ≑ ↑p * (↑p + 1) + -1 - ↑p [ZMOD (↑p + 1) ^ 2])
(hβ‚‚ : p ^ p - p ≑ p * (p + 1) - 1 - p [MOD (p + 1) ^ 2]) :
False := by
have h₃: p * (p + 1) - 1 - p = p^2 - 1 := by
rw [Nat.sub_sub, mul_add]
simp
rw [← pow_two]
exact Nat.add_sub_add_right (p^2) p 1
rw [h₃] at hβ‚‚
clear h₃ gpo gpe g₁ gβ‚‚
-- now derive a line of contradictions from hβ‚€
have hc₁: (p ^ p - p) ≑ 0 [MOD (p+1)^2] := by exact modEq_zero_iff_dvd.mpr hβ‚€
-- mix the contradiction with what we had in hβ‚‚
have hβ‚„: p ^ 2 - 1 ≑ 0 [MOD (p+1)^2] := by
apply Nat.ModEq.symm at hβ‚‚
exact Nat.ModEq.trans hβ‚‚ hc₁
have hβ‚…: p - 1 ≑ 0 [MOD (p+1)] := by
rw [pow_two] at hβ‚„
have gβ‚€: p^2 - 1^2 = (p-1) * (p+1) := by
rw [mul_comm]
exact Nat.sq_sub_sq p 1
simp at gβ‚€
rw [gβ‚€] at hβ‚„
have g₁: p + 1 β‰  0 := by linarith
refine Nat.ModEq.mul_right_cancel' g₁ ?_
rw [zero_mul]
exact hβ‚„
have h₆: p - 1 ≀ 0 := by
refine Nat.ModEq.le_of_lt_add hβ‚… ?_
simp
rw [← succ_eq_add_one]
refine Nat.sub_lt_succ p 1
have h₇: 0 < p - 1 := by
simp
linarith
linarith [h₆,h₇]
lemma imo_2022_p5_10_21
(p : β„•) :
-- (hp : Nat.Prime p)
-- (hp5 : 5 ≀ p)
-- (hβ‚€ : (p + 1) ^ 2 ∣ p ^ p - p)
-- (gpo : Odd p)
-- (gpe : Even (p - 1))
-- (g₁ : (-1) ^ (p - 1) = 1)
-- (gβ‚‚ : (-1) ^ p = -1)
-- (h₁ : ↑p ^ p - ↑p ≑ ↑p * (↑p + 1) + -1 - ↑p [ZMOD (↑p + 1) ^ 2])
-- (hβ‚‚ : p ^ p - p ≑ p * (p + 1) - 1 - p [MOD (p + 1) ^ 2]) :
p * (p + 1) - 1 - p = p ^ 2 - 1 := by
rw [Nat.sub_sub, mul_add]
simp
rw [← pow_two]
exact Nat.add_sub_add_right (p^2) p 1
lemma imo_2022_p5_10_22
(p : β„•)
-- (hp : Nat.Prime p)
(hp5 : 5 ≀ p)
(hβ‚€ : (p + 1) ^ 2 ∣ p ^ p - p)
(gpo : Odd p)
(gpe : Even (p - 1))
(g₁ : (-1) ^ (p - 1) = 1)
(gβ‚‚ : (-1) ^ p = -1)
-- (h₁ : ↑p ^ p - ↑p ≑ ↑p * (↑p + 1) + -1 - ↑p [ZMOD (↑p + 1) ^ 2])
(hβ‚‚ : p ^ p - p ≑ p * (p + 1) - 1 - p [MOD (p + 1) ^ 2])
(h₃ : p * (p + 1) - 1 - p = p ^ 2 - 1) :
False := by
rw [h₃] at hβ‚‚
clear h₃ gpo gpe g₁ gβ‚‚
-- now derive a line of contradictions from hβ‚€
have hc₁: (p ^ p - p) ≑ 0 [MOD (p+1)^2] := by exact modEq_zero_iff_dvd.mpr hβ‚€
-- mix the contradiction with what we had in hβ‚‚
have hβ‚„: p ^ 2 - 1 ≑ 0 [MOD (p+1)^2] := by
apply Nat.ModEq.symm at hβ‚‚
exact Nat.ModEq.trans hβ‚‚ hc₁
have hβ‚…: p - 1 ≑ 0 [MOD (p+1)] := by
rw [pow_two] at hβ‚„
have gβ‚€: p^2 - 1^2 = (p-1) * (p+1) := by
rw [mul_comm]
exact Nat.sq_sub_sq p 1
simp at gβ‚€
rw [gβ‚€] at hβ‚„
have g₁: p + 1 β‰  0 := by linarith
refine Nat.ModEq.mul_right_cancel' g₁ ?_
rw [zero_mul]
exact hβ‚„
have h₆: p - 1 ≀ 0 := by
refine Nat.ModEq.le_of_lt_add hβ‚… ?_
simp
rw [← succ_eq_add_one]
refine Nat.sub_lt_succ p 1
have h₇: 0 < p - 1 := by
simp
linarith
linarith [h₆,h₇]
lemma imo_2022_p5_10_23
(p : β„•)
-- (hp : Nat.Prime p)
(hp5 : 5 ≀ p)
-- (hβ‚€ : (p + 1) ^ 2 ∣ p ^ p - p)
-- (h₁ : ↑p ^ p - ↑p ≑ ↑p * (↑p + 1) + -1 - ↑p [ZMOD (↑p + 1) ^ 2])
(hβ‚‚ : p ^ p - p ≑ p ^ 2 - 1 [MOD (p + 1) ^ 2])
(hc₁ : p ^ p - p ≑ 0 [MOD (p + 1) ^ 2]) :
False := by
-- mix the contradiction with what we had in hβ‚‚
have hβ‚„: p ^ 2 - 1 ≑ 0 [MOD (p+1)^2] := by
apply Nat.ModEq.symm at hβ‚‚
exact Nat.ModEq.trans hβ‚‚ hc₁
have hβ‚…: p - 1 ≑ 0 [MOD (p+1)] := by
rw [pow_two] at hβ‚„
have gβ‚€: p^2 - 1^2 = (p-1) * (p+1) := by
rw [mul_comm]
exact Nat.sq_sub_sq p 1
simp at gβ‚€
rw [gβ‚€] at hβ‚„
have g₁: p + 1 β‰  0 := by linarith
refine Nat.ModEq.mul_right_cancel' g₁ ?_
rw [zero_mul]
exact hβ‚„
have h₆: p - 1 ≀ 0 := by
refine Nat.ModEq.le_of_lt_add hβ‚… ?_
simp
rw [← succ_eq_add_one]
refine Nat.sub_lt_succ p 1
have h₇: 0 < p - 1 := by
simp
linarith
linarith [h₆,h₇]
lemma imo_2022_p5_10_24
(p : β„•)
-- (hp : Nat.Prime p)
-- (hp5 : 5 ≀ p)
-- (hβ‚€ : (p + 1) ^ 2 ∣ p ^ p - p)
-- (h₁ : ↑p ^ p - ↑p ≑ ↑p * (↑p + 1) + -1 - ↑p [ZMOD (↑p + 1) ^ 2])
(hβ‚‚ : p ^ p - p ≑ p ^ 2 - 1 [MOD (p + 1) ^ 2])
(hc₁ : p ^ p - p ≑ 0 [MOD (p + 1) ^ 2]) :
p ^ 2 - 1 ≑ 0 [MOD (p + 1) ^ 2] := by
apply Nat.ModEq.symm at hβ‚‚
exact Nat.ModEq.trans hβ‚‚ hc₁
lemma imo_2022_p5_10_25
(p : β„•)
-- (hp : Nat.Prime p)
(hp5 : 5 ≀ p)
-- (hβ‚€ : (p + 1) ^ 2 ∣ p ^ p - p)
-- (h₁ : ↑p ^ p - ↑p ≑ ↑p * (↑p + 1) + -1 - ↑p [ZMOD (↑p + 1) ^ 2])
-- (hβ‚‚ : p ^ p - p ≑ p ^ 2 - 1 [MOD (p + 1) ^ 2])
-- (hc₁ : p ^ p - p ≑ 0 [MOD (p + 1) ^ 2])
(hβ‚„ : p ^ 2 - 1 ≑ 0 [MOD (p + 1) ^ 2]) :
False := by
have hβ‚…: p - 1 ≑ 0 [MOD (p+1)] := by
rw [pow_two] at hβ‚„
have gβ‚€: p^2 - 1^2 = (p-1) * (p+1) := by
rw [mul_comm]
exact Nat.sq_sub_sq p 1
simp at gβ‚€
rw [gβ‚€] at hβ‚„
have g₁: p + 1 β‰  0 := by linarith
refine Nat.ModEq.mul_right_cancel' g₁ ?_
rw [zero_mul]
exact hβ‚„
have h₆: p - 1 ≀ 0 := by
refine Nat.ModEq.le_of_lt_add hβ‚… ?_
simp
rw [← succ_eq_add_one]
refine Nat.sub_lt_succ p 1
have h₇: 0 < p - 1 := by
simp
linarith
linarith [h₆,h₇]
lemma imo_2022_p5_10_26
(p : β„•)
-- (hp : Nat.Prime p)
(hp5 : 5 ≀ p)
-- (hβ‚€ : (p + 1) ^ 2 ∣ p ^ p - p)
-- (h₁ : ↑p ^ p - ↑p ≑ ↑p * (↑p + 1) + -1 - ↑p [ZMOD (↑p + 1) ^ 2])
-- (hβ‚‚ : p ^ p - p ≑ p ^ 2 - 1 [MOD (p + 1) ^ 2])
-- (hc₁ : p ^ p - p ≑ 0 [MOD (p + 1) ^ 2])
(hβ‚„ : p ^ 2 - 1 ≑ 0 [MOD (p + 1) ^ 2]) :
p - 1 ≑ 0 [MOD p + 1] := by
rw [pow_two] at hβ‚„
have gβ‚€: p^2 - 1^2 = (p-1) * (p+1) := by
rw [mul_comm]
exact Nat.sq_sub_sq p 1
simp at gβ‚€
rw [gβ‚€] at hβ‚„
have g₁: p + 1 β‰  0 := by linarith
refine Nat.ModEq.mul_right_cancel' g₁ ?_
rw [zero_mul]
exact hβ‚„
lemma imo_2022_p5_10_27
(p : β„•) :
-- (hp : Nat.Prime p)
-- (hp5 : 5 ≀ p)
-- (hβ‚€ : (p + 1) ^ 2 ∣ p ^ p - p)
-- (h₁ : ↑p ^ p - ↑p ≑ ↑p * (↑p + 1) + -1 - ↑p [ZMOD (↑p + 1) ^ 2])
-- (hβ‚‚ : p ^ p - p ≑ p ^ 2 - 1 [MOD (p + 1) ^ 2])
-- (hc₁ : p ^ p - p ≑ 0 [MOD (p + 1) ^ 2])
-- (hβ‚„ : p ^ 2 - 1 ≑ 0 [MOD (p + 1) * (p + 1)]) :
p ^ 2 - 1 ^ 2 = (p - 1) * (p + 1) := by
rw [mul_comm]
exact Nat.sq_sub_sq p 1
lemma imo_2022_p5_10_28
(p : β„•)
-- (hp : Nat.Prime p)
(hp5 : 5 ≀ p)
-- (hβ‚€ : (p + 1) ^ 2 ∣ p ^ p - p)
-- (h₁ : ↑p ^ p - ↑p ≑ ↑p * (↑p + 1) + -1 - ↑p [ZMOD (↑p + 1) ^ 2])
-- (hβ‚‚ : p ^ p - p ≑ p ^ 2 - 1 [MOD (p + 1) ^ 2])
-- (hc₁ : p ^ p - p ≑ 0 [MOD (p + 1) ^ 2])
(hβ‚„ : p ^ 2 - 1 ≑ 0 [MOD (p + 1) * (p + 1)])
(gβ‚€ : p ^ 2 - 1 ^ 2 = (p - 1) * (p + 1)) :
p - 1 ≑ 0 [MOD p + 1] := by
simp at gβ‚€
rw [gβ‚€] at hβ‚„
have g₁: p + 1 β‰  0 := by linarith
refine Nat.ModEq.mul_right_cancel' g₁ ?_
rw [zero_mul]
exact hβ‚„
lemma imo_2022_p5_10_29
(p : β„•)
-- (hp : Nat.Prime p)
-- (hp5 : 5 ≀ p)
-- (hβ‚€ : (p + 1) ^ 2 ∣ p ^ p - p)
-- (h₁ : ↑p ^ p - ↑p ≑ ↑p * (↑p + 1) + -1 - ↑p [ZMOD (↑p + 1) ^ 2])
-- (hβ‚‚ : p ^ p - p ≑ p ^ 2 - 1 [MOD (p + 1) ^ 2])
-- (hc₁ : p ^ p - p ≑ 0 [MOD (p + 1) ^ 2])
(hβ‚„ : p ^ 2 - 1 ≑ 0 [MOD (p + 1) ^ 2]) :
(p - 1) * (p + 1) ≑ 0 [MOD (p + 1) * (p + 1)] := by
rw [pow_two] at hβ‚„
have gβ‚€: p^2 - 1^2 = (p-1) * (p+1) := by
rw [mul_comm]
exact Nat.sq_sub_sq p 1
simp at gβ‚€
rw [gβ‚€] at hβ‚„
exact hβ‚„
lemma imo_2022_p5_10_30
(p : β„•)
-- (hp : Nat.Prime p)
-- (hp5 : 5 ≀ p)
-- (hβ‚€ : (p + 1) ^ 2 ∣ p ^ p - p)
-- (h₁ : ↑p ^ p - ↑p ≑ ↑p * (↑p + 1) + -1 - ↑p [ZMOD (↑p + 1) ^ 2])
-- (hβ‚‚ : p ^ p - p ≑ p ^ 2 - 1 [MOD (p + 1) ^ 2])
-- (hc₁ : p ^ p - p ≑ 0 [MOD (p + 1) ^ 2])
(hβ‚„ : (p - 1) * (p + 1) ≑ 0 [MOD (p + 1) * (p + 1)])
-- (gβ‚€ : p ^ 2 - 1 = (p - 1) * (p + 1))
(g₁ : p + 1 β‰  0) :
p - 1 ≑ 0 [MOD p + 1] := by
refine Nat.ModEq.mul_right_cancel' g₁ ?_
rw [zero_mul]
exact hβ‚„
lemma imo_2022_p5_10_31
(p : β„•)
-- (hp : Nat.Prime p)
(hp5 : 5 ≀ p)
-- (hβ‚€ : (p + 1) ^ 2 ∣ p ^ p - p)
-- (h₁ : ↑p ^ p - ↑p ≑ ↑p * (↑p + 1) + -1 - ↑p [ZMOD (↑p + 1) ^ 2])
-- (hβ‚‚ : p ^ p - p ≑ p ^ 2 - 1 [MOD (p + 1) ^ 2])
-- (hc₁ : p ^ p - p ≑ 0 [MOD (p + 1) ^ 2])
-- (hβ‚„ : p ^ 2 - 1 ≑ 0 [MOD (p + 1) ^ 2])
(hβ‚… : p - 1 ≑ 0 [MOD p + 1]) :
False := by
have h₆: p - 1 ≀ 0 := by
refine Nat.ModEq.le_of_lt_add hβ‚… ?_
simp
rw [← succ_eq_add_one]
refine Nat.sub_lt_succ p 1
have h₇: 0 < p - 1 := by
simp
linarith
linarith [h₆,h₇]
lemma imo_2022_p5_10_32
(p : β„•)
-- (hp : Nat.Prime p)
-- (hp5 : 5 ≀ p)
-- (hβ‚€ : (p + 1) ^ 2 ∣ p ^ p - p)
-- (h₁ : ↑p ^ p - ↑p ≑ ↑p * (↑p + 1) + -1 - ↑p [ZMOD (↑p + 1) ^ 2])
-- (hβ‚‚ : p ^ p - p ≑ p ^ 2 - 1 [MOD (p + 1) ^ 2])
-- (hc₁ : p ^ p - p ≑ 0 [MOD (p + 1) ^ 2])
-- (hβ‚„ : p ^ 2 - 1 ≑ 0 [MOD (p + 1) ^ 2])
(hβ‚… : p - 1 ≑ 0 [MOD p + 1]) :
p - 1 ≀ 0 := by
refine Nat.ModEq.le_of_lt_add hβ‚… ?_
simp
rw [← succ_eq_add_one]
refine Nat.sub_lt_succ p 1
lemma imo_2022_p5_10_33
(p : β„•) :
-- (hp : Nat.Prime p)
-- (hp5 : 5 ≀ p)
-- (hβ‚€ : (p + 1) ^ 2 ∣ p ^ p - p)
-- (h₁ : ↑p ^ p - ↑p ≑ ↑p * (↑p + 1) + -1 - ↑p [ZMOD (↑p + 1) ^ 2])
-- (hβ‚‚ : p ^ p - p ≑ p ^ 2 - 1 [MOD (p + 1) ^ 2])
-- (hc₁ : p ^ p - p ≑ 0 [MOD (p + 1) ^ 2])
-- (hβ‚„ : p ^ 2 - 1 ≑ 0 [MOD (p + 1) ^ 2])
-- (hβ‚… : p - 1 ≑ 0 [MOD p + 1]) :
p - 1 < 0 + (p + 1) := by
simp
rw [← succ_eq_add_one]
refine Nat.sub_lt_succ p 1
lemma imo_2022_p5_10_34
(p : β„•)
-- (hp : Nat.Prime p)
(hp5 : 5 ≀ p)
-- (hβ‚€ : (p + 1) ^ 2 ∣ p ^ p - p)
-- (h₁ : ↑p ^ p - ↑p ≑ ↑p * (↑p + 1) + -1 - ↑p [ZMOD (↑p + 1) ^ 2])
-- (hβ‚‚ : p ^ p - p ≑ p ^ 2 - 1 [MOD (p + 1) ^ 2])
-- (hc₁ : p ^ p - p ≑ 0 [MOD (p + 1) ^ 2])
-- (hβ‚„ : p ^ 2 - 1 ≑ 0 [MOD (p + 1) ^ 2])
-- (hβ‚… : p - 1 ≑ 0 [MOD p + 1])
(h₆ : p - 1 ≀ 0) :
False := by
have h₇: 0 < p - 1 := by
simp
linarith
linarith [h₆,h₇]
lemma imo_2022_p5_11
(p: β„•)
-- (hp: Nat.Prime p)
(hpl: 5 ≀ p) :
(p + p.factorial < p ^ p) := by
-- induction p using Nat.case_strong_induction_on with n ih,
refine Nat.le_induction ?_ ?_ p (hpl)
. exact Nat.lt_of_sub_eq_succ rfl
. intros n hn h₁
have hβ‚‚: n + 1 + (n + 1).factorial = (n.factorial + 1) * (n + 1) := by
rw[add_mul, one_mul, Nat.factorial_succ]
rw [add_comm (n + 1)]
rw [mul_comm (n + 1)]
rw [hβ‚‚, pow_add, pow_one ]
refine Nat.mul_lt_mul_of_pos_right ?_ (by linarith)
have hβ‚…: n ^ n < (n + 1) ^ n := by
refine Nat.pow_lt_pow_left ?_ ?_
. exact lt_add_one n
. refine Nat.ne_of_gt ?_
linarith
linarith
lemma imo_2022_p5_11_1 :
-- (p : β„•)
-- (hpl : 5 ≀ p) :
βˆ€ (n : β„•), 5 ≀ n β†’ n + n ! < n ^ n β†’ n + 1 + (n + 1)! < (n + 1) ^ (n + 1) := by
intros n hn h₁
have hβ‚‚: n + 1 + (n + 1).factorial = (n.factorial + 1) * (n + 1) := by
rw[add_mul, one_mul, Nat.factorial_succ]
rw [add_comm (n + 1)]
rw [mul_comm (n + 1)]
rw [hβ‚‚, pow_add, pow_one ]
refine Nat.mul_lt_mul_of_pos_right ?_ (by linarith)
have hβ‚…: n ^ n < (n + 1) ^ n := by
refine Nat.pow_lt_pow_left ?_ ?_
. exact lt_add_one n
. refine Nat.ne_of_gt ?_
linarith
linarith
lemma imo_2022_p5_11_2
-- (p : β„•)
-- (hpl : 5 ≀ p)
(n : β„•)
(hn : 5 ≀ n)
(h₁ : n + n ! < n ^ n) :
n + 1 + (n + 1)! < (n + 1) ^ (n + 1) := by
have hβ‚‚: n + 1 + (n + 1).factorial = (n.factorial + 1) * (n + 1) := by
rw[add_mul, one_mul, Nat.factorial_succ]
rw [add_comm (n + 1)]
rw [mul_comm (n + 1)]
rw [hβ‚‚, pow_add, pow_one ]
refine Nat.mul_lt_mul_of_pos_right ?_ (by linarith)
have hβ‚…: n ^ n < (n + 1) ^ n := by
refine Nat.pow_lt_pow_left ?_ ?_
. exact lt_add_one n
. refine Nat.ne_of_gt ?_
linarith
linarith
lemma imo_2022_p5_11_3
-- (p : β„•)
-- (hpl : 5 ≀ p)
(n : β„•) :
-- (hn : 5 ≀ n)
-- (h₁ : n + n ! < n ^ n) :
n + 1 + (n + 1)! = (n ! + 1) * (n + 1) := by
rw[add_mul, one_mul, Nat.factorial_succ]
rw [add_comm (n + 1)]
rw [mul_comm (n + 1)]
lemma imo_2022_p5_11_4
-- (p : β„•)
-- (hpl : 5 ≀ p)
(n : β„•)
(hn : 5 ≀ n)
(h₁ : n + n ! < n ^ n)
(hβ‚‚ : n + 1 + (n + 1)! = (n ! + 1) * (n + 1)) :
n + 1 + (n + 1)! < (n + 1) ^ (n + 1) := by
rw [hβ‚‚, pow_add, pow_one ]
refine Nat.mul_lt_mul_of_pos_right ?_ (by linarith)
have hβ‚…: n ^ n < (n + 1) ^ n := by
refine Nat.pow_lt_pow_left ?_ ?_
. exact lt_add_one n
. refine Nat.ne_of_gt ?_
linarith
linarith
lemma imo_2022_p5_11_5
-- (p : β„•)
-- (hpl : 5 ≀ p)
(n : β„•)
(hn : 5 ≀ n)
(h₁ : n + n ! < n ^ n) :
-- (hβ‚‚ : n + 1 + (n + 1)! = (n ! + 1) * (n + 1)) :
n ! + 1 < (n + 1) ^ n := by
have hβ‚…: n ^ n < (n + 1) ^ n := by
refine Nat.pow_lt_pow_left ?_ ?_
. exact lt_add_one n
. refine Nat.ne_of_gt ?_
linarith
linarith
lemma imo_2022_p5_11_6
-- (p : β„•)
-- (hpl : 5 ≀ p)
(n : β„•)
(hn : 5 ≀ n)
-- (h₁ : n + n ! < n ^ n)
-- (hβ‚‚ : n + 1 + (n + 1)! = (n ! + 1) * (n + 1))
(hβ‚„ : n + n ! < n ^ n) :
n ! + 1 < (n + 1) ^ n := by
have hβ‚…: n ^ n < (n + 1) ^ n := by
refine Nat.pow_lt_pow_left ?_ ?_
. exact lt_add_one n
. refine Nat.ne_of_gt ?_
linarith
linarith
lemma imo_2022_p5_11_7
-- (p : β„•)
-- (hpl : 5 ≀ p)
(n : β„•)
(hn : 5 ≀ n) :
-- (h₁ : n + n ! < n ^ n)
-- (hβ‚‚ : n + 1 + (n + 1)! = (n ! + 1) * (n + 1))
-- (hβ‚„ : n + n ! < n ^ n) :
n ^ n < (n + 1) ^ n := by
refine Nat.pow_lt_pow_left ?_ ?_
. exact lt_add_one n
. refine Nat.ne_of_gt ?_
linarith
lemma imo_2022_p5_12
(b p: β„•)
(hp: Nat.Prime p)
(hbp: p ≀ b)
(h₁: p ^ p = b.factorial + p)
(hp5: 5 ≀ p) :
(False) := by
-- first prove that b = p cannot be
by_cases hβ‚„: b = p
. exfalso
rw [hβ‚„] at h₁
have hβ‚…: p + p.factorial < p^p := by exact imo_2022_p5_11 p hp5
linarith
. have hpb: p < b := by exact lt_of_le_of_ne' hbp hβ‚„
clear hbp hβ‚„
have hβ‚‚: (p + 1) ^ 2 ∣ b.factorial := by
have g₁: p + 1 ≀ b := by exact succ_le_iff.mpr hpb
have gβ‚‚: 2 ∣ (p + 1) := by
have gg₁: Odd p := by
refine hp.odd_of_ne_two ?_
linarith
have ggβ‚‚: Even (p + 1) := by
refine gg₁.add_odd ?_
norm_num
exact even_iff_two_dvd.mp ggβ‚‚
have g₃: 2 * ((p+1)/2) * (p + 1) ∣ b.factorial := by
have gg₁: (p + 1).factorial ∣ b.factorial := by exact Nat.factorial_dvd_factorial g₁
have ggβ‚‚: (p + 1).factorial = (p + 1) * p.factorial := by exact factorial_succ p
rw [mul_comm] at ggβ‚‚
have gg₃: 6/2 ≀ (p + 1)/2 := by
refine Nat.div_le_div_right ?_
linarith
norm_num at gg₃
have ggβ‚„: 2 + (p+1)/2 ≀ p := by
-- strong induction
refine Nat.le_induction ?_ ?_ p (hp5)
. norm_num
. intros n _ hβ‚‚
ring_nf
have ggg₁: (n / 2).succ ≀ (n + 1) / 2 + 1 := by
rw [← succ_eq_add_one]
refine Nat.succ_le_succ ?_
refine Nat.div_le_div_right ?_
linarith
simp
nth_rewrite 1 [← mul_one 2]
rw [Nat.two_mul 1, add_assoc]
refine Nat.add_le_add_left ?_ 1
refine le_trans ?_ hβ‚‚
rw [add_comm 2 _]
nth_rewrite 3 [← mul_one 2]
rw [Nat.two_mul 1, ← add_assoc, add_comm 1]
exact Nat.add_le_add_right ggg₁ 1
have ggβ‚…: (2+(p+1)/2).factorial ∣ p.factorial := by
exact factorial_dvd_factorial ggβ‚„
have gg₆: (2:β„•).factorial * ((p+1)/2).factorial ∣ p.factorial := by
refine dvd_trans ?_ ggβ‚…
exact (2:β„•).factorial_mul_factorial_dvd_factorial_add ((p + 1) / 2)
have gg₇: 2 * ((p+1)/2) ∣ p.factorial := by
refine dvd_trans ?_ gg₆
simp
refine mul_dvd_mul_left 2 ?_
refine Nat.dvd_factorial (by linarith[gg₃]) (by linarith)
have ggβ‚ˆ: 2 * ((p+1)/2) * (p + 1) ∣ p.factorial * (p + 1) := by
refine mul_dvd_mul_right ?_ (p + 1)
exact gg₇
rw [ggβ‚‚] at gg₁
exact dvd_trans ggβ‚ˆ gg₁
have gβ‚„: 2 * ((p+1)/2) = (p + 1) := by
exact Nat.mul_div_cancel' gβ‚‚
rw [gβ‚„] at g₃
ring_nf at *
exact g₃
have h₃: b.factorial = p ^ p - p := by exact eq_tsub_of_add_eq (h₁.symm)
rw [h₃] at hβ‚‚
exact imo_2022_p5_10 p hp hp5 hβ‚‚
lemma imo_2022_p5_12_1
(b p : β„•)
-- (hp : Nat.Prime p)
-- (hbp : p ≀ b)
(h₁ : p ^ p = b ! + p)
(hp5 : 5 ≀ p)
(hβ‚„ : b = p) :
False := by
rw [hβ‚„] at h₁
have hβ‚…: p + p.factorial < p ^ p := by exact imo_2022_p5_11 p hp5
linarith
lemma imo_2022_p5_12_2
(b p : β„•)
-- (hp : Nat.Prime p)
-- (hbp : p ≀ b)
(h₁ : p ^ p = b ! + p)
(hp5 : 5 ≀ p)
(hβ‚„ : b = p)
(hβ‚… : p + p ! < p ^ p) :
False := by
rw [hβ‚„] at h₁
linarith
lemma imo_2022_p5_12_3
(b p : β„•)
-- (hp : Nat.Prime p)
-- (hbp : p ≀ b)
(h₁ : p ^ p = b ! + p)
-- (hp5 : 5 ≀ p)
(hβ‚„ : b = p)
(hβ‚… : p + p ! < p ^ p) :
False := by
rw [h₁, add_comm, hβ‚„] at hβ‚…
apply Nat.add_lt_add_iff_right.mp at hβ‚…
linarith
lemma imo_2022_p5_12_4
(b p : β„•)
(hp : Nat.Prime p)
(h₁ : p ^ p = b ! + p)
(hp5 : 5 ≀ p)
(hpb : p < b) :
False := by
have hβ‚‚: (p + 1) ^ 2 ∣ b.factorial := by
have g₁: p + 1 ≀ b := by exact succ_le_iff.mpr hpb
have gβ‚‚: 2 ∣ (p + 1) := by
have gg₁: Odd p := by
refine hp.odd_of_ne_two ?_
linarith
have ggβ‚‚: Even (p + 1) := by
refine gg₁.add_odd ?_
norm_num
exact even_iff_two_dvd.mp ggβ‚‚
have g₃: 2 * ((p+1)/2) * (p + 1) ∣ b.factorial := by
have gg₁: (p + 1).factorial ∣ b.factorial := by exact Nat.factorial_dvd_factorial g₁
have ggβ‚‚: (p + 1).factorial = (p + 1) * p.factorial := by exact factorial_succ p
rw [mul_comm] at ggβ‚‚
have gg₃: 6/2 ≀ (p + 1)/2 := by
refine Nat.div_le_div_right ?_
linarith
norm_num at gg₃
have ggβ‚„: 2 + (p+1)/2 ≀ p := by
-- strong induction
refine Nat.le_induction ?_ ?_ p (hp5)
. norm_num
. intros n _ hβ‚‚
ring_nf
have ggg₁: (n / 2).succ ≀ (n + 1) / 2 + 1 := by
rw [← succ_eq_add_one]
refine Nat.succ_le_succ ?_
refine Nat.div_le_div_right ?_
linarith
simp
nth_rewrite 1 [← mul_one 2]
rw [Nat.two_mul 1, add_assoc]
refine Nat.add_le_add_left ?_ 1
refine le_trans ?_ hβ‚‚
rw [add_comm 2 _]
nth_rewrite 3 [← mul_one 2]
rw [Nat.two_mul 1, ← add_assoc, add_comm 1]
exact Nat.add_le_add_right ggg₁ 1
have ggβ‚…: (2+(p+1)/2).factorial ∣ p.factorial := by
exact factorial_dvd_factorial ggβ‚„
have gg₆: (2:β„•).factorial * ((p+1)/2).factorial ∣ p.factorial := by
refine dvd_trans ?_ ggβ‚…
exact (2:β„•).factorial_mul_factorial_dvd_factorial_add ((p + 1) / 2)
have gg₇: 2 * ((p+1)/2) ∣ p.factorial := by
refine dvd_trans ?_ gg₆
simp
refine mul_dvd_mul_left 2 ?_
refine Nat.dvd_factorial (by linarith[gg₃]) (by linarith)
have ggβ‚ˆ: 2 * ((p+1)/2) * (p + 1) ∣ p.factorial * (p + 1) := by
refine mul_dvd_mul_right ?_ (p + 1)
exact gg₇
rw [ggβ‚‚] at gg₁
exact dvd_trans ggβ‚ˆ gg₁
have gβ‚„: 2 * ((p+1)/2) = (p + 1) := by
exact Nat.mul_div_cancel' gβ‚‚
rw [gβ‚„] at g₃
ring_nf at *
exact g₃
have h₃: b.factorial = p ^ p - p := by exact eq_tsub_of_add_eq (h₁.symm)
rw [h₃] at hβ‚‚
exact imo_2022_p5_10 p hp hp5 hβ‚‚
lemma imo_2022_p5_12_5
(b p : β„•)
(hp : Nat.Prime p)
(h₁ : p ^ p = b ! + p)
(hp5 : 5 ≀ p)
(hpb : p < b) :
(p + 1) ^ 2 ∣ b ! := by
have g₁: p + 1 ≀ b := by exact succ_le_iff.mpr hpb
have gβ‚‚: 2 ∣ (p + 1) := by
have gg₁: Odd p := by
refine hp.odd_of_ne_two ?_
linarith
have ggβ‚‚: Even (p + 1) := by
refine gg₁.add_odd ?_
norm_num
exact even_iff_two_dvd.mp ggβ‚‚
have g₃: 2 * ((p+1)/2) * (p + 1) ∣ b.factorial := by
have gg₁: (p + 1).factorial ∣ b.factorial := by exact Nat.factorial_dvd_factorial g₁
have ggβ‚‚: (p + 1).factorial = (p + 1) * p.factorial := by exact factorial_succ p
rw [mul_comm] at ggβ‚‚
have gg₃: 6/2 ≀ (p + 1)/2 := by
refine Nat.div_le_div_right ?_
linarith
norm_num at gg₃
have ggβ‚„: 2 + (p+1)/2 ≀ p := by
-- strong induction
refine Nat.le_induction ?_ ?_ p (hp5)
. norm_num
. intros n _ hβ‚‚
ring_nf
have ggg₁: (n / 2).succ ≀ (n + 1) / 2 + 1 := by
rw [← succ_eq_add_one]
refine Nat.succ_le_succ ?_
refine Nat.div_le_div_right ?_
linarith
simp
nth_rewrite 1 [← mul_one 2]
rw [Nat.two_mul 1, add_assoc]
refine Nat.add_le_add_left ?_ 1
refine le_trans ?_ hβ‚‚
rw [add_comm 2 _]
nth_rewrite 3 [← mul_one 2]
rw [Nat.two_mul 1, ← add_assoc, add_comm 1]
exact Nat.add_le_add_right ggg₁ 1
have ggβ‚…: (2+(p+1)/2).factorial ∣ p.factorial := by
exact factorial_dvd_factorial ggβ‚„
have gg₆: (2:β„•).factorial * ((p+1)/2).factorial ∣ p.factorial := by
refine dvd_trans ?_ ggβ‚…
exact (2:β„•).factorial_mul_factorial_dvd_factorial_add ((p + 1) / 2)
have gg₇: 2 * ((p+1)/2) ∣ p.factorial := by
refine dvd_trans ?_ gg₆
simp
refine mul_dvd_mul_left 2 ?_
refine Nat.dvd_factorial (by linarith[gg₃]) (by linarith)
have ggβ‚ˆ: 2 * ((p+1)/2) * (p + 1) ∣ p.factorial * (p + 1) := by
refine mul_dvd_mul_right ?_ (p + 1)
exact gg₇
rw [ggβ‚‚] at gg₁
exact dvd_trans ggβ‚ˆ gg₁
have gβ‚„: 2 * ((p+1)/2) = (p + 1) := by
exact Nat.mul_div_cancel' gβ‚‚
rw [gβ‚„] at g₃
ring_nf at *
exact g₃
lemma imo_2022_p5_12_6
(b p : β„•)
(hp : Nat.Prime p)
(h₁ : p ^ p = b ! + p)
(hp5 : 5 ≀ p)
-- (hpb : p < b)
(g₁ : p + 1 ≀ b) :
(p + 1) ^ 2 ∣ b ! := by
have gβ‚‚: 2 ∣ (p + 1) := by
have gg₁: Odd p := by
refine hp.odd_of_ne_two ?_
linarith
have ggβ‚‚: Even (p + 1) := by
refine gg₁.add_odd ?_
norm_num
exact even_iff_two_dvd.mp ggβ‚‚
have g₃: 2 * ((p+1)/2) * (p + 1) ∣ b.factorial := by
have gg₁: (p + 1).factorial ∣ b.factorial := by exact Nat.factorial_dvd_factorial g₁
have ggβ‚‚: (p + 1).factorial = (p + 1) * p.factorial := by exact factorial_succ p
rw [mul_comm] at ggβ‚‚
have gg₃: 6/2 ≀ (p + 1)/2 := by
refine Nat.div_le_div_right ?_
linarith
norm_num at gg₃
have ggβ‚„: 2 + (p+1)/2 ≀ p := by
-- strong induction
refine Nat.le_induction ?_ ?_ p (hp5)
. norm_num
. intros n _ hβ‚‚
ring_nf
have ggg₁: (n / 2).succ ≀ (n + 1) / 2 + 1 := by
rw [← succ_eq_add_one]
refine Nat.succ_le_succ ?_
refine Nat.div_le_div_right ?_
linarith
simp
nth_rewrite 1 [← mul_one 2]
rw [Nat.two_mul 1, add_assoc]
refine Nat.add_le_add_left ?_ 1
refine le_trans ?_ hβ‚‚
rw [add_comm 2 _]
nth_rewrite 3 [← mul_one 2]
rw [Nat.two_mul 1, ← add_assoc, add_comm 1]
exact Nat.add_le_add_right ggg₁ 1
have ggβ‚…: (2+(p+1)/2).factorial ∣ p.factorial := by
exact factorial_dvd_factorial ggβ‚„
have gg₆: (2:β„•).factorial * ((p+1)/2).factorial ∣ p.factorial := by
refine dvd_trans ?_ ggβ‚…
exact (2:β„•).factorial_mul_factorial_dvd_factorial_add ((p + 1) / 2)
have gg₇: 2 * ((p+1)/2) ∣ p.factorial := by
refine dvd_trans ?_ gg₆
simp
refine mul_dvd_mul_left 2 ?_
refine Nat.dvd_factorial (by linarith[gg₃]) (by linarith)
have ggβ‚ˆ: 2 * ((p+1)/2) * (p + 1) ∣ p.factorial * (p + 1) := by
refine mul_dvd_mul_right ?_ (p + 1)
exact gg₇
rw [ggβ‚‚] at gg₁
exact dvd_trans ggβ‚ˆ gg₁
have gβ‚„: 2 * ((p+1)/2) = (p + 1) := by
exact Nat.mul_div_cancel' gβ‚‚
rw [gβ‚„] at g₃
ring_nf at *
exact g₃
lemma imo_2022_p5_12_7
-- (b : β„•)
(p : β„•)
(hp : Nat.Prime p)
-- (h₁ : p ^ p = b ! + p)
(hp5 : 5 ≀ p) :
-- (hpb : p < b)
-- (g₁ : p + 1 ≀ b) :
2 ∣ p + 1 := by
have gg₁: Odd p := by
refine hp.odd_of_ne_two ?_
linarith
have ggβ‚‚: Even (p + 1) := by
refine gg₁.add_odd ?_
norm_num
exact even_iff_two_dvd.mp ggβ‚‚
lemma imo_2022_p5_12_8
(b p : β„•)
-- (hp : Nat.Prime p)
(h₁ : p ^ p = b ! + p)
(hp5 : 5 ≀ p)
-- (hpb : p < b)
(g₁ : p + 1 ≀ b)
(gβ‚‚ : 2 ∣ p + 1) :
(p + 1) ^ 2 ∣ b ! := by
have g₃: 2 * ((p+1)/2) * (p + 1) ∣ b.factorial := by
have gg₁: (p + 1).factorial ∣ b.factorial := by exact Nat.factorial_dvd_factorial g₁
have ggβ‚‚: (p + 1).factorial = (p + 1) * p.factorial := by exact factorial_succ p
rw [mul_comm] at ggβ‚‚
have gg₃: 6/2 ≀ (p + 1)/2 := by
refine Nat.div_le_div_right ?_
linarith
norm_num at gg₃
have ggβ‚„: 2 + (p+1)/2 ≀ p := by
-- strong induction
refine Nat.le_induction ?_ ?_ p (hp5)
. norm_num
. intros n _ hβ‚‚
ring_nf
have ggg₁: (n / 2).succ ≀ (n + 1) / 2 + 1 := by
rw [← succ_eq_add_one]
refine Nat.succ_le_succ ?_
refine Nat.div_le_div_right ?_
linarith
simp
nth_rewrite 1 [← mul_one 2]
rw [Nat.two_mul 1, add_assoc]
refine Nat.add_le_add_left ?_ 1
refine le_trans ?_ hβ‚‚
rw [add_comm 2 _]
nth_rewrite 3 [← mul_one 2]
rw [Nat.two_mul 1, ← add_assoc, add_comm 1]
exact Nat.add_le_add_right ggg₁ 1
have ggβ‚…: (2+(p+1)/2).factorial ∣ p.factorial := by
exact factorial_dvd_factorial ggβ‚„
have gg₆: (2:β„•).factorial * ((p+1)/2).factorial ∣ p.factorial := by
refine dvd_trans ?_ ggβ‚…
exact (2:β„•).factorial_mul_factorial_dvd_factorial_add ((p + 1) / 2)
have gg₇: 2 * ((p+1)/2) ∣ p.factorial := by
refine dvd_trans ?_ gg₆
simp
refine mul_dvd_mul_left 2 ?_
refine Nat.dvd_factorial (by linarith[gg₃]) (by linarith)
have ggβ‚ˆ: 2 * ((p+1)/2) * (p + 1) ∣ p.factorial * (p + 1) := by
refine mul_dvd_mul_right ?_ (p + 1)
exact gg₇
rw [ggβ‚‚] at gg₁
exact dvd_trans ggβ‚ˆ gg₁
have gβ‚„: 2 * ((p+1)/2) = (p + 1) := by
exact Nat.mul_div_cancel' gβ‚‚
rw [gβ‚„] at g₃
ring_nf at *
exact g₃
lemma imo_2022_p5_12_9
(b p : β„•)
-- (hp : Nat.Prime p)
-- (h₁ : p ^ p = b ! + p)
(hp5 : 5 ≀ p)
-- (hpb : p < b)
(g₁ : p + 1 ≀ b) :
-- (gβ‚‚ : 2 ∣ p + 1) :
2 * ((p + 1) / 2) * (p + 1) ∣ b ! := by
have gg₁: (p + 1).factorial ∣ b.factorial := by exact Nat.factorial_dvd_factorial g₁
have ggβ‚‚: (p + 1).factorial = (p + 1) * p.factorial := by exact factorial_succ p
rw [mul_comm] at ggβ‚‚
have gg₃: 6/2 ≀ (p + 1)/2 := by
refine Nat.div_le_div_right ?_
linarith
norm_num at gg₃
have ggβ‚„: 2 + (p+1)/2 ≀ p := by
-- strong induction
refine Nat.le_induction ?_ ?_ p (hp5)
. norm_num
. intros n _ hβ‚‚
ring_nf
have ggg₁: (n / 2).succ ≀ (n + 1) / 2 + 1 := by
rw [← succ_eq_add_one]
refine Nat.succ_le_succ ?_
refine Nat.div_le_div_right ?_
linarith
simp
nth_rewrite 1 [← mul_one 2]
rw [Nat.two_mul 1, add_assoc]
refine Nat.add_le_add_left ?_ 1
refine le_trans ?_ hβ‚‚
rw [add_comm 2 _]
nth_rewrite 3 [← mul_one 2]
rw [Nat.two_mul 1, ← add_assoc, add_comm 1]
exact Nat.add_le_add_right ggg₁ 1
have ggβ‚…: (2+(p+1)/2).factorial ∣ p.factorial := by
exact factorial_dvd_factorial ggβ‚„
have gg₆: (2:β„•).factorial * ((p+1)/2).factorial ∣ p.factorial := by
refine dvd_trans ?_ ggβ‚…
exact (2:β„•).factorial_mul_factorial_dvd_factorial_add ((p + 1) / 2)
have gg₇: 2 * ((p+1)/2) ∣ p.factorial := by
refine dvd_trans ?_ gg₆
simp
refine mul_dvd_mul_left 2 ?_
refine Nat.dvd_factorial (by linarith[gg₃]) (by linarith)
have ggβ‚ˆ: 2 * ((p+1)/2) * (p + 1) ∣ p.factorial * (p + 1) := by
refine mul_dvd_mul_right ?_ (p + 1)
exact gg₇
rw [ggβ‚‚] at gg₁
exact dvd_trans ggβ‚ˆ gg₁
lemma imo_2022_p5_12_10
(b p : β„•)
-- (hp : Nat.Prime p)
-- (h₁ : p ^ p = b ! + p)
(hp5 : 5 ≀ p)
-- (hpb : p < b)
-- (g₁ : p + 1 ≀ b)
-- (gβ‚‚ : 2 ∣ p + 1)
(gg₁ : (p + 1)! ∣ b !) :
2 * ((p + 1) / 2) * (p + 1) ∣ b ! := by
have ggβ‚‚: (p + 1).factorial = (p + 1) * p.factorial := by exact factorial_succ p
rw [mul_comm] at ggβ‚‚
have gg₃: 6/2 ≀ (p + 1)/2 := by
refine Nat.div_le_div_right ?_
linarith
norm_num at gg₃
have ggβ‚„: 2 + (p+1)/2 ≀ p := by
-- strong induction
refine Nat.le_induction ?_ ?_ p (hp5)
. norm_num
. intros n _ hβ‚‚
ring_nf
have ggg₁: (n / 2).succ ≀ (n + 1) / 2 + 1 := by
rw [← succ_eq_add_one]
refine Nat.succ_le_succ ?_
refine Nat.div_le_div_right ?_
linarith
simp
nth_rewrite 1 [← mul_one 2]
rw [Nat.two_mul 1, add_assoc]
refine Nat.add_le_add_left ?_ 1
refine le_trans ?_ hβ‚‚
rw [add_comm 2 _]
nth_rewrite 3 [← mul_one 2]
rw [Nat.two_mul 1, ← add_assoc, add_comm 1]
exact Nat.add_le_add_right ggg₁ 1
have ggβ‚…: (2+(p+1)/2).factorial ∣ p.factorial := by
exact factorial_dvd_factorial ggβ‚„
have gg₆: (2:β„•).factorial * ((p+1)/2).factorial ∣ p.factorial := by
refine dvd_trans ?_ ggβ‚…
exact (2:β„•).factorial_mul_factorial_dvd_factorial_add ((p + 1) / 2)
have gg₇: 2 * ((p+1)/2) ∣ p.factorial := by
refine dvd_trans ?_ gg₆
simp
refine mul_dvd_mul_left 2 ?_
refine Nat.dvd_factorial (by linarith[gg₃]) (by linarith)
have ggβ‚ˆ: 2 * ((p+1)/2) * (p + 1) ∣ p.factorial * (p + 1) := by
refine mul_dvd_mul_right ?_ (p + 1)
exact gg₇
rw [ggβ‚‚] at gg₁
exact dvd_trans ggβ‚ˆ gg₁
lemma imo_2022_p5_12_11
(b p : β„•)
-- (hp : Nat.Prime p)
-- (h₁ : p ^ p = b ! + p)
(hp5 : 5 ≀ p)
-- (hpb : p < b)
-- (g₁ : p + 1 ≀ b)
-- (gβ‚‚ : 2 ∣ p + 1)
(gg₁ : (p + 1)! ∣ b !)
(ggβ‚‚ : (p + 1)! = (p + 1) * p !) :
2 * ((p + 1) / 2) * (p + 1) ∣ b ! := by
rw [mul_comm] at ggβ‚‚
have gg₃: 6/2 ≀ (p + 1)/2 := by
refine Nat.div_le_div_right ?_
linarith
norm_num at gg₃
have ggβ‚„: 2 + (p+1)/2 ≀ p := by
-- strong induction
refine Nat.le_induction ?_ ?_ p (hp5)
. norm_num
. intros n _ hβ‚‚
ring_nf
have ggg₁: (n / 2).succ ≀ (n + 1) / 2 + 1 := by
rw [← succ_eq_add_one]
refine Nat.succ_le_succ ?_
refine Nat.div_le_div_right ?_
linarith
simp
nth_rewrite 1 [← mul_one 2]
rw [Nat.two_mul 1, add_assoc]
refine Nat.add_le_add_left ?_ 1
refine le_trans ?_ hβ‚‚
rw [add_comm 2 _]
nth_rewrite 3 [← mul_one 2]
rw [Nat.two_mul 1, ← add_assoc, add_comm 1]
exact Nat.add_le_add_right ggg₁ 1
have ggβ‚…: (2+(p+1)/2).factorial ∣ p.factorial := by
exact factorial_dvd_factorial ggβ‚„
have gg₆: (2:β„•).factorial * ((p+1)/2).factorial ∣ p.factorial := by
refine dvd_trans ?_ ggβ‚…
exact (2:β„•).factorial_mul_factorial_dvd_factorial_add ((p + 1) / 2)
have gg₇: 2 * ((p+1)/2) ∣ p.factorial := by
refine dvd_trans ?_ gg₆
simp
refine mul_dvd_mul_left 2 ?_
refine Nat.dvd_factorial (by linarith[gg₃]) (by linarith)
have ggβ‚ˆ: 2 * ((p+1)/2) * (p + 1) ∣ p.factorial * (p + 1) := by
refine mul_dvd_mul_right ?_ (p + 1)
exact gg₇
rw [ggβ‚‚] at gg₁
exact dvd_trans ggβ‚ˆ gg₁
lemma imo_2022_p5_12_12
(b p : β„•)
-- (hp : Nat.Prime p)
-- (h₁ : p ^ p = b ! + p)
(hp5 : 5 ≀ p)
-- (hpb : p < b)
-- (g₁ : p + 1 ≀ b)
-- (gβ‚‚ : 2 ∣ p + 1)
(gg₁ : (p + 1)! ∣ b !)
(ggβ‚‚ : (p + 1)! = p ! * (p + 1))
(gg₃ : 3 ≀ (p + 1) / 2) :
2 * ((p + 1) / 2) * (p + 1) ∣ b ! := by
have ggβ‚„: 2 + (p+1)/2 ≀ p := by
-- strong induction
refine Nat.le_induction ?_ ?_ p (hp5)
. norm_num
. intros n _ hβ‚‚
ring_nf
have ggg₁: (n / 2).succ ≀ (n + 1) / 2 + 1 := by
rw [← succ_eq_add_one]
refine Nat.succ_le_succ ?_
refine Nat.div_le_div_right ?_
linarith
simp
nth_rewrite 1 [← mul_one 2]
rw [Nat.two_mul 1, add_assoc]
refine Nat.add_le_add_left ?_ 1
refine le_trans ?_ hβ‚‚
rw [add_comm 2 _]
nth_rewrite 3 [← mul_one 2]
rw [Nat.two_mul 1, ← add_assoc, add_comm 1]
exact Nat.add_le_add_right ggg₁ 1
have ggβ‚…: (2+(p+1)/2).factorial ∣ p.factorial := by
exact factorial_dvd_factorial ggβ‚„
have gg₆: (2:β„•).factorial * ((p+1)/2).factorial ∣ p.factorial := by
refine dvd_trans ?_ ggβ‚…
exact (2:β„•).factorial_mul_factorial_dvd_factorial_add ((p + 1) / 2)
have gg₇: 2 * ((p+1)/2) ∣ p.factorial := by
refine dvd_trans ?_ gg₆
simp
refine mul_dvd_mul_left 2 ?_
refine Nat.dvd_factorial (by linarith[gg₃]) (by linarith)
have ggβ‚ˆ: 2 * ((p+1)/2) * (p + 1) ∣ p.factorial * (p + 1) := by
refine mul_dvd_mul_right ?_ (p + 1)
exact gg₇
rw [ggβ‚‚] at gg₁
exact dvd_trans ggβ‚ˆ gg₁
lemma imo_2022_p5_12_13
-- (b : β„•)
(p : β„•)
-- (hp : Nat.Prime p)
-- (h₁ : p ^ p = b ! + p)
(hp5 : 5 ≀ p) :
-- (hpb : p < b)
-- (g₁ : p + 1 ≀ b)
-- (gβ‚‚ : 2 ∣ p + 1)
-- (gg₁ : (p + 1)! ∣ b !)
-- (ggβ‚‚ : (p + 1)! = p ! * (p + 1))
-- (gg₃ : 3 ≀ (p + 1) / 2) :
2 + (p + 1) / 2 ≀ p := by
refine Nat.le_induction ?_ ?_ p (hp5)
. norm_num
. intros n _ hβ‚‚
ring_nf
have ggg₁: (n / 2).succ ≀ (n + 1) / 2 + 1 := by
rw [← succ_eq_add_one]
refine Nat.succ_le_succ ?_
refine Nat.div_le_div_right ?_
linarith
simp
nth_rewrite 1 [← mul_one 2]
rw [Nat.two_mul 1, add_assoc]
refine Nat.add_le_add_left ?_ 1
refine le_trans ?_ hβ‚‚
rw [add_comm 2 _]
nth_rewrite 3 [← mul_one 2]
rw [Nat.two_mul 1, ← add_assoc, add_comm 1]
exact Nat.add_le_add_right ggg₁ 1
lemma imo_2022_p5_12_14 :
-- (b p : β„•)
-- (hp : Nat.Prime p)
-- (h₁ : p ^ p = b ! + p)
-- (hp5 : 5 ≀ p)
-- (hpb : p < b)
-- (g₁ : p + 1 ≀ b)
-- (gβ‚‚ : 2 ∣ p + 1)
-- (gg₁ : (p + 1)! ∣ b !)
-- (ggβ‚‚ : (p + 1)! = p ! * (p + 1))
-- (gg₃ : 3 ≀ (p + 1) / 2) :
βˆ€ (n : β„•), 5 ≀ n β†’ 2 + (n + 1) / 2 ≀ n β†’ 2 + (n + 1 + 1) / 2 ≀ n + 1 := by
intros n _ hβ‚‚
ring_nf
have ggg₁: (n / 2).succ ≀ (n + 1) / 2 + 1 := by
rw [← succ_eq_add_one]
refine Nat.succ_le_succ ?_
refine Nat.div_le_div_right ?_
linarith
simp
nth_rewrite 1 [← mul_one 2]
rw [Nat.two_mul 1, add_assoc]
refine Nat.add_le_add_left ?_ 1
refine le_trans ?_ hβ‚‚
rw [add_comm 2 _]
nth_rewrite 3 [← mul_one 2]
rw [Nat.two_mul 1, ← add_assoc, add_comm 1]
exact Nat.add_le_add_right ggg₁ 1
lemma imo_2022_p5_12_15
-- (b p : β„•)
-- (hp : Nat.Prime p)
-- (h₁ : p ^ p = b ! + p)
-- (hp5 : 5 ≀ p)
-- (hpb : p < b)
-- (g₁ : p + 1 ≀ b)
-- (gβ‚‚ : 2 ∣ p + 1)
-- (gg₁ : (p + 1)! ∣ b !)
-- (ggβ‚‚ : (p + 1)! = p ! * (p + 1))
-- (gg₃ : 3 ≀ (p + 1) / 2)
(n : β„•)
-- (hmn : 5 ≀ n)
(hβ‚‚ : 2 + (n + 1) / 2 ≀ n) :
2 + (2 + n) / 2 ≀ 1 + n := by
ring_nf
have ggg₁: (n / 2).succ ≀ (n + 1) / 2 + 1 := by
rw [← succ_eq_add_one]
refine Nat.succ_le_succ ?_
refine Nat.div_le_div_right ?_
linarith
simp
nth_rewrite 1 [← mul_one 2]
rw [Nat.two_mul 1, add_assoc]
refine Nat.add_le_add_left ?_ 1
refine le_trans ?_ hβ‚‚
rw [add_comm 2 _]
nth_rewrite 3 [← mul_one 2]
rw [Nat.two_mul 1, ← add_assoc, add_comm 1]
exact Nat.add_le_add_right ggg₁ 1
lemma imo_2022_p5_12_16
-- (b p : β„•)
-- (hp : Nat.Prime p)
-- (h₁ : p ^ p = b ! + p)
-- (hp5 : 5 ≀ p)
-- (hpb : p < b)
-- (g₁ : p + 1 ≀ b)
-- (gβ‚‚ : 2 ∣ p + 1)
-- (gg₁ : (p + 1)! ∣ b !)
-- (ggβ‚‚ : (p + 1)! = p ! * (p + 1))
-- (gg₃ : 3 ≀ (p + 1) / 2)
(n : β„•) :
-- (hmn : 5 ≀ n)
-- (hβ‚‚ : 2 + (n + 1) / 2 ≀ n) :
succ (n / 2) ≀ (n + 1) / 2 + 1 := by
rw [← succ_eq_add_one]
refine Nat.succ_le_succ ?_
refine Nat.div_le_div_right ?_
linarith
lemma imo_2022_p5_12_17
-- (b p : β„•)
-- (hp : Nat.Prime p)
-- (h₁ : p ^ p = b ! + p)
-- (hp5 : 5 ≀ p)
-- (hpb : p < b)
-- (g₁ : p + 1 ≀ b)
-- (gβ‚‚ : 2 ∣ p + 1)
-- (gg₁ : (p + 1)! ∣ b !)
-- (ggβ‚‚ : (p + 1)! = p ! * (p + 1))
-- (gg₃ : 3 ≀ (p + 1) / 2)
(n : β„•)
-- (hmn : 5 ≀ n)
(hβ‚‚ : 2 + (n + 1) / 2 ≀ n)
(ggg₁ : succ (n / 2) ≀ (n + 1) / 2 + 1) :
2 + succ (n / 2) ≀ 1 + n := by
nth_rewrite 1 [← mul_one 2]
rw [Nat.two_mul 1, add_assoc]
refine Nat.add_le_add_left ?_ 1
refine le_trans ?_ hβ‚‚
rw [add_comm 2 _]
nth_rewrite 3 [← mul_one 2]
rw [Nat.two_mul 1, ← add_assoc, add_comm 1]
exact Nat.add_le_add_right ggg₁ 1
lemma imo_2022_p5_12_18
-- (b p : β„•)
-- (hp : Nat.Prime p)
-- (h₁ : p ^ p = b ! + p)
-- (hp5 : 5 ≀ p)
-- (hpb : p < b)
-- (g₁ : p + 1 ≀ b)
-- (gβ‚‚ : 2 ∣ p + 1)
-- (gg₁ : (p + 1)! ∣ b !)
-- (ggβ‚‚ : (p + 1)! = p ! * (p + 1))
-- (gg₃ : 3 ≀ (p + 1) / 2)
(n : β„•)
-- (hmn : 5 ≀ n)
(hβ‚‚ : 2 + (n + 1) / 2 ≀ n)
(ggg₁ : succ (n / 2) ≀ (n + 1) / 2 + 1) :
1 + succ (n / 2) ≀ n := by
refine le_trans ?_ hβ‚‚
rw [add_comm 2 _]
nth_rewrite 3 [← mul_one 2]
rw [Nat.two_mul 1, ← add_assoc, add_comm 1]
exact Nat.add_le_add_right ggg₁ 1
lemma imo_2022_p5_12_19
-- (b p : β„•)
-- (hp : Nat.Prime p)
-- (h₁ : p ^ p = b ! + p)
-- (hp5 : 5 ≀ p)
-- (hpb : p < b)
-- (g₁ : p + 1 ≀ b)
-- (gβ‚‚ : 2 ∣ p + 1)
-- (gg₁ : (p + 1)! ∣ b !)
-- (ggβ‚‚ : (p + 1)! = p ! * (p + 1))
-- (gg₃ : 3 ≀ (p + 1) / 2)
(n : β„•)
-- (hmn : 5 ≀ n)
(hβ‚‚ : 2 + (n + 1) / 2 ≀ n)
-- (ggg₁ : succ (n / 2) ≀ (n + 1) / 2 + 1)
(g₃ : 1 + succ (n / 2) ≀ (n + 1) / 2 + 2 * 1) :
1 + succ (n / 2) ≀ n := by
refine le_trans ?_ hβ‚‚
rw [add_comm 2 _]
nth_rewrite 3 [← mul_one 2]
rw [Nat.two_mul 1, ← add_assoc]
exact g₃
lemma imo_2022_p5_12_20
-- (b p : β„•)
-- (hp : Nat.Prime p)
-- (h₁ : p ^ p = b ! + p)
-- (hp5 : 5 ≀ p)
-- (hpb : p < b)
-- (g₁ : p + 1 ≀ b)
-- (gβ‚‚ : 2 ∣ p + 1)
-- (gg₁ : (p + 1)! ∣ b !)
-- (ggβ‚‚ : (p + 1)! = p ! * (p + 1))
-- (gg₃ : 3 ≀ (p + 1) / 2)
(n : β„•)
-- (hmn : 5 ≀ n)
-- (hβ‚‚ : 2 + (n + 1) / 2 ≀ n)
(ggg₁ : succ (n / 2) ≀ (n + 1) / 2 + 1) :
1 + succ (n / 2) ≀ (n + 1) / 2 + 2 := by
nth_rewrite 3 [← mul_one 2]
rw [Nat.two_mul 1, ← add_assoc, add_comm 1]
exact Nat.add_le_add_right ggg₁ 1
lemma imo_2022_p5_12_21
(b p : β„•)
-- (hp : Nat.Prime p)
-- (h₁ : p ^ p = b ! + p)
-- (hp5 : 5 ≀ p)
-- (hpb : p < b)
-- (g₁ : p + 1 ≀ b)
-- (gβ‚‚ : 2 ∣ p + 1)
(gg₁ : (p + 1)! ∣ b !)
(ggβ‚‚ : (p + 1)! = p ! * (p + 1))
(gg₃ : 3 ≀ (p + 1) / 2)
(ggβ‚„ : 2 + (p + 1) / 2 ≀ p) :
2 * ((p + 1) / 2) * (p + 1) ∣ b ! := by
have ggβ‚…: (2+(p+1)/2).factorial ∣ p.factorial := by
exact factorial_dvd_factorial ggβ‚„
have gg₆: (2:β„•).factorial * ((p+1)/2).factorial ∣ p.factorial := by
refine dvd_trans ?_ ggβ‚…
exact (2:β„•).factorial_mul_factorial_dvd_factorial_add ((p + 1) / 2)
have gg₇: 2 * ((p+1)/2) ∣ p.factorial := by
refine dvd_trans ?_ gg₆
simp
refine mul_dvd_mul_left 2 ?_
refine Nat.dvd_factorial (by linarith[gg₃]) (by linarith)
have ggβ‚ˆ: 2 * ((p+1)/2) * (p + 1) ∣ p.factorial * (p + 1) := by
refine mul_dvd_mul_right ?_ (p + 1)
exact gg₇
rw [ggβ‚‚] at gg₁
exact dvd_trans ggβ‚ˆ gg₁
lemma imo_2022_p5_12_22
(b p : β„•)
-- (hp : Nat.Prime p)
-- (h₁ : p ^ p = b ! + p)
-- (hp5 : 5 ≀ p)
-- (hpb : p < b)
-- (g₁ : p + 1 ≀ b)
-- (gβ‚‚ : 2 ∣ p + 1)
(gg₁ : (p + 1)! ∣ b !)
(ggβ‚‚ : (p + 1)! = p ! * (p + 1))
(gg₃ : 3 ≀ (p + 1) / 2)
(ggβ‚„ : 2 + (p + 1) / 2 ≀ p)
(ggβ‚… : (2 + (p + 1) / 2)! ∣ p !) :
2 * ((p + 1) / 2) * (p + 1) ∣ b ! := by
have gg₆: (2:β„•).factorial * ((p+1)/2).factorial ∣ p.factorial := by
refine dvd_trans ?_ ggβ‚…
exact (2:β„•).factorial_mul_factorial_dvd_factorial_add ((p + 1) / 2)
have gg₇: 2 * ((p+1)/2) ∣ p.factorial := by
refine dvd_trans ?_ gg₆
simp
refine mul_dvd_mul_left 2 ?_
refine Nat.dvd_factorial (by linarith[gg₃]) (by linarith)
have ggβ‚ˆ: 2 * ((p+1)/2) * (p + 1) ∣ p.factorial * (p + 1) := by
refine mul_dvd_mul_right ?_ (p + 1)
exact gg₇
rw [ggβ‚‚] at gg₁
exact dvd_trans ggβ‚ˆ gg₁
lemma imo_2022_p5_12_23
-- (b : β„•)
(p : β„•)
-- (hp : Nat.Prime p)
-- (h₁ : p ^ p = b ! + p)
-- (hp5 : 5 ≀ p)
-- (hpb : p < b)
-- (g₁ : p + 1 ≀ b)
-- (gβ‚‚ : 2 ∣ p + 1)
-- (gg₁ : (p + 1)! ∣ b !)
-- (ggβ‚‚ : (p + 1)! = p ! * (p + 1))
-- (gg₃ : 3 ≀ (p + 1) / 2)
-- (ggβ‚„ : 2 + (p + 1) / 2 ≀ p)
(ggβ‚… : (2 + (p + 1) / 2)! ∣ p !) :
2! * ((p + 1) / 2)! ∣ p ! := by
refine dvd_trans ?_ ggβ‚…
exact (2:β„•).factorial_mul_factorial_dvd_factorial_add ((p + 1) / 2)
lemma imo_2022_p5_12_24
(b p : β„•)
-- (hp : Nat.Prime p)
-- (h₁ : p ^ p = b ! + p)
-- (hp5 : 5 ≀ p)
-- (hpb : p < b)
-- (g₁ : p + 1 ≀ b)
-- (gβ‚‚ : 2 ∣ p + 1)
(gg₁ : (p + 1)! ∣ b !)
(ggβ‚‚ : (p + 1)! = p ! * (p + 1))
(gg₃ : 3 ≀ (p + 1) / 2)
(ggβ‚„ : 2 + (p + 1) / 2 ≀ p)
(ggβ‚… : (2 + (p + 1) / 2)! ∣ p !)
(gg₆ : 2! * ((p + 1) / 2)! ∣ p !) :
2 * ((p + 1) / 2) * (p + 1) ∣ b ! := by
have gg₇: 2 * ((p+1)/2) ∣ p.factorial := by
refine dvd_trans ?_ gg₆
simp
refine mul_dvd_mul_left 2 ?_
refine Nat.dvd_factorial (by linarith[gg₃]) (by linarith)
have ggβ‚ˆ: 2 * ((p+1)/2) * (p + 1) ∣ p.factorial * (p + 1) := by
refine mul_dvd_mul_right ?_ (p + 1)
exact gg₇
rw [ggβ‚‚] at gg₁
exact dvd_trans ggβ‚ˆ gg₁
lemma imo_2022_p5_12_25
-- (b : β„•)
(p : β„•)
-- (hp : Nat.Prime p)
-- (h₁ : p ^ p = b ! + p)
-- (hp5 : 5 ≀ p)
-- (hpb : p < b)
-- (g₁ : p + 1 ≀ b)
-- (gβ‚‚ : 2 ∣ p + 1)
-- (gg₁ : (p + 1)! ∣ b !)
-- (ggβ‚‚ : (p + 1)! = p ! * (p + 1))
(gg₃ : 3 ≀ (p + 1) / 2)
-- (ggβ‚„ : 2 + (p + 1) / 2 ≀ p)
-- (ggβ‚… : (2 + (p + 1) / 2)! ∣ p !)
(gg₆ : 2! * ((p + 1) / 2)! ∣ p !) :
2 * ((p + 1) / 2) ∣ p ! := by
refine dvd_trans ?_ gg₆
simp
refine mul_dvd_mul_left 2 ?_
refine Nat.dvd_factorial (by linarith[gg₃]) (by linarith)
lemma imo_2022_p5_12_26
-- (b : β„•)
(p : β„•)
-- (hp : Nat.Prime p)
-- (h₁ : p ^ p = b ! + p)
-- (hp5 : 5 ≀ p)
-- (hpb : p < b)
-- (g₁ : p + 1 ≀ b)
-- (gβ‚‚ : 2 ∣ p + 1)
-- (gg₁ : (p + 1)! ∣ b !)
-- (ggβ‚‚ : (p + 1)! = p ! * (p + 1))
(gg₃ : 3 ≀ (p + 1) / 2) :
-- (ggβ‚„ : 2 + (p + 1) / 2 ≀ p)
-- (ggβ‚… : (2 + (p + 1) / 2)! ∣ p !)
-- (gg₆ : 2! * ((p + 1) / 2)! ∣ p !) :
2 * ((p + 1) / 2) ∣ 2 * ((p + 1) / 2)! := by
refine mul_dvd_mul_left 2 ?_
refine Nat.dvd_factorial (by linarith[gg₃]) (by linarith)
lemma imo_2022_p5_12_27
(b p : β„•)
-- (hp : Nat.Prime p)
-- (h₁ : p ^ p = b ! + p)
-- (hp5 : 5 ≀ p)
-- (hpb : p < b)
-- (g₁ : p + 1 ≀ b)
-- (gβ‚‚ : 2 ∣ p + 1)
(gg₁ : (p + 1)! ∣ b !)
(ggβ‚‚ : (p + 1)! = p ! * (p + 1))
(gg₃ : 3 ≀ (p + 1) / 2)
(ggβ‚„ : 2 + (p + 1) / 2 ≀ p)
(ggβ‚… : (2 + (p + 1) / 2)! ∣ p !)
(gg₆ : 2! * ((p + 1) / 2)! ∣ p !)
(gg₇ : 2 * ((p + 1) / 2) ∣ p !) :
2 * ((p + 1) / 2) * (p + 1) ∣ b ! := by
have ggβ‚ˆ: 2 * ((p+1)/2) * (p + 1) ∣ p.factorial * (p + 1) := by
refine mul_dvd_mul_right ?_ (p + 1)
exact gg₇
rw [ggβ‚‚] at gg₁
exact dvd_trans ggβ‚ˆ gg₁
lemma imo_2022_p5_12_28
-- (b : β„•)
(p : β„•)
-- (hp : Nat.Prime p)
-- (h₁ : p ^ p = b ! + p)
-- (hp5 : 5 ≀ p)
-- (hpb : p < b)
-- (g₁ : p + 1 ≀ b)
-- (gβ‚‚ : 2 ∣ p + 1)
-- (gg₁ : (p + 1)! ∣ b !)
-- (ggβ‚‚ : (p + 1)! = p ! * (p + 1))
-- (gg₃ : 3 ≀ (p + 1) / 2)
-- (ggβ‚„ : 2 + (p + 1) / 2 ≀ p)
-- (ggβ‚… : (2 + (p + 1) / 2)! ∣ p !)
-- (gg₆ : 2! * ((p + 1) / 2)! ∣ p !)
(gg₇ : 2 * ((p + 1) / 2) ∣ p !) :
2 * ((p + 1) / 2) * (p + 1) ∣ p ! * (p + 1) := by
refine mul_dvd_mul_right ?_ (p + 1)
exact gg₇
lemma imo_2022_p5_12_29
(b p : β„•)
-- (hp : Nat.Prime p)
-- (h₁ : p ^ p = b ! + p)
-- (hp5 : 5 ≀ p)
-- (hpb : p < b)
-- (g₁ : p + 1 ≀ b)
-- (gβ‚‚ : 2 ∣ p + 1)
(gg₁ : (p + 1)! ∣ b !)
(ggβ‚‚ : (p + 1)! = p ! * (p + 1))
(gg₃ : 3 ≀ (p + 1) / 2)
(ggβ‚„ : 2 + (p + 1) / 2 ≀ p)
(ggβ‚… : (2 + (p + 1) / 2)! ∣ p !)
(gg₆ : 2! * ((p + 1) / 2)! ∣ p !)
(gg₇ : 2 * ((p + 1) / 2) ∣ p !)
(ggβ‚ˆ : 2 * ((p + 1) / 2) * (p + 1) ∣ p ! * (p + 1)) :
2 * ((p + 1) / 2) * (p + 1) ∣ b ! := by
rw [ggβ‚‚] at gg₁
exact dvd_trans ggβ‚ˆ gg₁
lemma imo_2022_p5_12_30
(b p : β„•)
-- (hp : Nat.Prime p)
(h₁ : p ^ p = b ! + p)
-- (hp5 : 5 ≀ p)
-- (hpb : p < b)
(g₁ : p + 1 ≀ b)
(gβ‚‚ : 2 ∣ p + 1)
(g₃ : 2 * ((p + 1) / 2) * (p + 1) ∣ b !) :
(p + 1) ^ 2 ∣ b ! := by
have gβ‚„: 2 * ((p+1)/2) = (p + 1) := by
exact Nat.mul_div_cancel' gβ‚‚
rw [gβ‚„] at g₃
ring_nf at *
exact g₃
lemma imo_2022_p5_12_31
(b p : β„•)
-- (hp : Nat.Prime p)
(h₁ : p ^ p = b ! + p)
-- (hp5 : 5 ≀ p)
-- (hpb : p < b)
(g₁ : p + 1 ≀ b)
(gβ‚‚ : 2 ∣ p + 1)
(g₃ : 2 * ((p + 1) / 2) * (p + 1) ∣ b !)
(gβ‚„ : 2 * ((p + 1) / 2) = p + 1) :
(p + 1) ^ 2 ∣ b ! := by
rw [gβ‚„] at g₃
ring_nf at *
exact g₃
lemma imo_2022_p5_12_32
(b p : β„•)
(hp : Nat.Prime p)
(h₁ : p ^ p = b ! + p)
(hp5 : 5 ≀ p)
-- (hpb : p < b)
(hβ‚‚ : (p + 1) ^ 2 ∣ b !) :
False := by
have h₃: b.factorial = p ^ p - p := by exact eq_tsub_of_add_eq (h₁.symm)
rw [h₃] at hβ‚‚
exact imo_2022_p5_10 p hp hp5 hβ‚‚
lemma imo_2022_p5_13
(a b p: β„•)
(hp: Nat.Prime p)
(hβ‚‚: p ∣ a)
(hb2p: 2 * p ≀ b) :
(p ^ 2 ∣ a ^ p - b.factorial) := by
have g₁: p^p ∣ a^p := by exact pow_dvd_pow_of_dvd hβ‚‚ p
have gβ‚‚: 2 ≀ p := by exact Prime.two_le hp
have h₃: p^2 ∣ a^p := by exact pow_dvd_of_le_of_pow_dvd gβ‚‚ g₁
have g₃: (2*p).factorial ∣ b.factorial := by exact factorial_dvd_factorial hb2p
have gβ‚„: p.factorial * p.factorial ∣ (p+p).factorial := by
exact factorial_mul_factorial_dvd_factorial_add p p
rw [← pow_two, ← two_mul] at gβ‚„
have gβ‚…: p ∣ p.factorial := by exact Nat.dvd_factorial (by linarith) (by linarith)
have hβ‚„: p ^ 2 ∣ p.factorial ^ 2 := by exact pow_dvd_pow_of_dvd gβ‚… 2
have g₆: p ^ 2 ∣ (2 * p).factorial := by exact dvd_trans hβ‚„ gβ‚„
have hβ‚…: p^2 ∣ b.factorial := by exact dvd_trans g₆ g₃
exact dvd_sub' h₃ hβ‚…
lemma imo_2022_p5_13_1
(a b p : β„•)
(hp : Nat.Prime p)
-- (hβ‚‚ : p ∣ a)
(hb2p : 2 * p ≀ b)
(g₁ : p ^ p ∣ a ^ p) :
p ^ 2 ∣ a ^ p - b ! := by
have gβ‚‚: 2 ≀ p := by exact Prime.two_le hp
have h₃: p^2 ∣ a^p := by exact pow_dvd_of_le_of_pow_dvd gβ‚‚ g₁
have g₃: (2*p).factorial ∣ b.factorial := by exact factorial_dvd_factorial hb2p
have gβ‚„: p.factorial * p.factorial ∣ (p+p).factorial := by
exact factorial_mul_factorial_dvd_factorial_add p p
rw [← pow_two, ← two_mul] at gβ‚„
have gβ‚…: p ∣ p.factorial := by exact Nat.dvd_factorial (by linarith) (by linarith)
have hβ‚„: p ^ 2 ∣ p.factorial ^ 2 := by exact pow_dvd_pow_of_dvd gβ‚… 2
have g₆: p ^ 2 ∣ (2 * p).factorial := by exact dvd_trans hβ‚„ gβ‚„
have hβ‚…: p^2 ∣ b.factorial := by exact dvd_trans g₆ g₃
exact dvd_sub' h₃ hβ‚…
lemma imo_2022_p5_13_2
(a b p : β„•)
-- (hp : Nat.Prime p)
-- (hβ‚‚ : p ∣ a)
(hb2p : 2 * p ≀ b)
(g₁ : p ^ p ∣ a ^ p)
(gβ‚‚ : 2 ≀ p) :
p ^ 2 ∣ a ^ p - b ! := by
have h₃: p^2 ∣ a^p := by exact pow_dvd_of_le_of_pow_dvd gβ‚‚ g₁
have g₃: (2*p).factorial ∣ b.factorial := by exact factorial_dvd_factorial hb2p
have gβ‚„: p.factorial * p.factorial ∣ (p+p).factorial := by
exact factorial_mul_factorial_dvd_factorial_add p p
rw [← pow_two, ← two_mul] at gβ‚„
have gβ‚…: p ∣ p.factorial := by exact Nat.dvd_factorial (by linarith) (by linarith)
have hβ‚„: p ^ 2 ∣ p.factorial ^ 2 := by exact pow_dvd_pow_of_dvd gβ‚… 2
have g₆: p ^ 2 ∣ (2 * p).factorial := by exact dvd_trans hβ‚„ gβ‚„
have hβ‚…: p^2 ∣ b.factorial := by exact dvd_trans g₆ g₃
exact dvd_sub' h₃ hβ‚…
lemma imo_2022_p5_13_3
(a b p : β„•)
-- (hp : Nat.Prime p)
-- (hβ‚‚ : p ∣ a)
(hb2p : 2 * p ≀ b)
-- (g₁ : p ^ p ∣ a ^ p)
(gβ‚‚ : 2 ≀ p)
(h₃ : p ^ 2 ∣ a ^ p) :
p ^ 2 ∣ a ^ p - b ! := by
have g₃: (2*p).factorial ∣ b.factorial := by exact factorial_dvd_factorial hb2p
have gβ‚„: p.factorial * p.factorial ∣ (p+p).factorial := by
exact factorial_mul_factorial_dvd_factorial_add p p
rw [← pow_two, ← two_mul] at gβ‚„
have gβ‚…: p ∣ p.factorial := by exact Nat.dvd_factorial (by linarith) (by linarith)
have hβ‚„: p ^ 2 ∣ p.factorial ^ 2 := by exact pow_dvd_pow_of_dvd gβ‚… 2
have g₆: p ^ 2 ∣ (2 * p).factorial := by exact dvd_trans hβ‚„ gβ‚„
have hβ‚…: p^2 ∣ b.factorial := by exact dvd_trans g₆ g₃
exact dvd_sub' h₃ hβ‚…
lemma imo_2022_p5_13_4
(a p : β„•)
-- (b : β„•)
(hp : Nat.Prime p)
(hβ‚‚ : p ∣ a) :
-- (hb2p : 2 * p ≀ b) :
p ^ 2 ∣ a ^ p := by
have g₁: p^p ∣ a^p := by exact pow_dvd_pow_of_dvd hβ‚‚ p
have gβ‚‚: 2 ≀ p := by exact Prime.two_le hp
exact pow_dvd_of_le_of_pow_dvd gβ‚‚ g₁
lemma imo_2022_p5_13_5
(a b p : β„•)
-- (hp : Nat.Prime p)
-- (hβ‚‚ : p ∣ a)
-- (hb2p : 2 * p ≀ b)
-- (g₁ : p ^ p ∣ a ^ p)
(gβ‚‚ : 2 ≀ p)
(h₃ : p ^ 2 ∣ a ^ p)
(g₃ : (2 * p)! ∣ b !) :
p ^ 2 ∣ a ^ p - b ! := by
have gβ‚„: p.factorial * p.factorial ∣ (p+p).factorial := by
exact factorial_mul_factorial_dvd_factorial_add p p
rw [← pow_two, ← two_mul] at gβ‚„
have gβ‚…: p ∣ p.factorial := by exact Nat.dvd_factorial (by linarith) (by linarith)
have hβ‚„: p ^ 2 ∣ p.factorial ^ 2 := by exact pow_dvd_pow_of_dvd gβ‚… 2
have g₆: p ^ 2 ∣ (2 * p).factorial := by exact dvd_trans hβ‚„ gβ‚„
have hβ‚…: p^2 ∣ b.factorial := by exact dvd_trans g₆ g₃
exact dvd_sub' h₃ hβ‚…
lemma imo_2022_p5_13_6
(a b p : β„•)
-- (hp : Nat.Prime p)
-- (hβ‚‚ : p ∣ a)
-- (hb2p : 2 * p ≀ b)
-- (g₁ : p ^ p ∣ a ^ p)
(gβ‚‚ : 2 ≀ p)
(h₃ : p ^ 2 ∣ a ^ p)
(g₃ : (2 * p)! ∣ b !)
(gβ‚„ : p ! * p ! ∣ (p + p)!) :
p ^ 2 ∣ a ^ p - b ! := by
rw [← pow_two, ← two_mul] at gβ‚„
have gβ‚…: p ∣ p.factorial := by exact Nat.dvd_factorial (by linarith) (by linarith)
have hβ‚„: p ^ 2 ∣ p.factorial ^ 2 := by exact pow_dvd_pow_of_dvd gβ‚… 2
have g₆: p ^ 2 ∣ (2 * p).factorial := by exact dvd_trans hβ‚„ gβ‚„
have hβ‚…: p^2 ∣ b.factorial := by exact dvd_trans g₆ g₃
exact dvd_sub' h₃ hβ‚…
lemma imo_2022_p5_13_7
(a b p : β„•)
-- (hp : Nat.Prime p)
-- (hβ‚‚ : p ∣ a)
-- (hb2p : 2 * p ≀ b)
-- (g₁ : p ^ p ∣ a ^ p)
-- (gβ‚‚ : 2 ≀ p)
(h₃ : p ^ 2 ∣ a ^ p)
(g₃ : (2 * p)! ∣ b !)
(gβ‚„ : p ! ^ 2 ∣ (2 * p)!)
(gβ‚… : p ∣ p !) :
p ^ 2 ∣ a ^ p - b ! := by
have hβ‚„: p ^ 2 ∣ p.factorial ^ 2 := by exact pow_dvd_pow_of_dvd gβ‚… 2
have g₆: p ^ 2 ∣ (2 * p).factorial := by exact dvd_trans hβ‚„ gβ‚„
have hβ‚…: p^2 ∣ b.factorial := by exact dvd_trans g₆ g₃
exact dvd_sub' h₃ hβ‚…
lemma imo_2022_p5_13_8
-- (a b : β„•)
(p : β„•)
-- (hp : Nat.Prime p)
-- (hβ‚‚ : p ∣ a)
-- (hb2p : 2 * p ≀ b)
-- (g₁ : p ^ p ∣ a ^ p)
(gβ‚‚ : 2 ≀ p) :
-- (h₃ : p ^ 2 ∣ a ^ p)
-- (g₃ : (2 * p)! ∣ b !)
-- (gβ‚„ : p ! ^ 2 ∣ (2 * p)!) :
p ^ 2 ∣ p ! ^ 2 := by
have gβ‚…: p ∣ p.factorial := by exact Nat.dvd_factorial (by linarith) (by linarith)
exact pow_dvd_pow_of_dvd gβ‚… 2
lemma imo_2022_p5_13_9
-- (a b : β„•)
(p : β„•)
-- (hp : Nat.Prime p)
-- (hβ‚‚ : p ∣ a)
-- (hb2p : 2 * p ≀ b)
-- (g₁ : p ^ p ∣ a ^ p)
(gβ‚‚ : 2 ≀ p) :
-- (h₃ : p ^ 2 ∣ a ^ p) :
-- (g₃ : (2 * p)! ∣ b !)
-- (gβ‚„ : p ! ^ 2 ∣ (2 * p)!)
p ^ 2 ∣ p ! ^ 2 := by
refine pow_dvd_pow_of_dvd ?_ 2
exact Nat.dvd_factorial (by linarith) (by linarith)
lemma imo_2022_p5_13_10
(a b p : β„•)
-- (hp : Nat.Prime p)
-- (hβ‚‚ : p ∣ a)
-- (hb2p : 2 * p ≀ b)
-- (g₁ : p ^ p ∣ a ^ p)
-- (gβ‚‚ : 2 ≀ p)
(h₃ : p ^ 2 ∣ a ^ p)
(g₃ : (2 * p)! ∣ b !)
(gβ‚„ : p ! ^ 2 ∣ (2 * p)!)
-- (gβ‚… : p ∣ p !)
(hβ‚„ : p ^ 2 ∣ p ! ^ 2) :
p ^ 2 ∣ a ^ p - b ! := by
have g₆: p ^ 2 ∣ (2 * p).factorial := by exact dvd_trans hβ‚„ gβ‚„
have hβ‚…: p^2 ∣ b.factorial := by exact dvd_trans g₆ g₃
exact dvd_sub' h₃ hβ‚…
lemma imo_2022_p5_13_11
-- (a b : β„•)
(p : β„•)
-- (hp : Nat.Prime p)
-- (hβ‚‚ : p ∣ a)
-- (hb2p : 2 * p ≀ b)
-- (g₁ : p ^ p ∣ a ^ p)
-- (gβ‚‚ : 2 ≀ p)
-- (h₃ : p ^ 2 ∣ a ^ p)
-- (g₃ : (2 * p)! ∣ b !)
(gβ‚… : p ∣ p !) :
p ^ 2 ∣ (2 * p)! := by
have hβ‚„: p ^ 2 ∣ p.factorial ^ 2 := by exact pow_dvd_pow_of_dvd gβ‚… 2
refine dvd_trans hβ‚„ ?_
have gβ‚„: p.factorial * p.factorial ∣ (p+p).factorial := by
exact factorial_mul_factorial_dvd_factorial_add p p
rw [← pow_two, ← two_mul] at gβ‚„
exact gβ‚„
lemma imo_2022_p5_13_12
(a b p : β„•)
-- (hp : Nat.Prime p)
-- (hβ‚‚ : p ∣ a)
-- (hb2p : 2 * p ≀ b)
-- (g₁ : p ^ p ∣ a ^ p)
-- (gβ‚‚ : 2 ≀ p)
(h₃ : p ^ 2 ∣ a ^ p)
(g₃ : (2 * p)! ∣ b !)
-- (gβ‚„ : p ! ^ 2 ∣ (2 * p)!)
-- (gβ‚… : p ∣ p !)
-- (hβ‚„ : p ^ 2 ∣ p ! ^ 2)
(g₆ : p ^ 2 ∣ (2 * p)!) :
p ^ 2 ∣ a ^ p - b ! := by
have hβ‚…: p^2 ∣ b.factorial := by exact dvd_trans g₆ g₃
exact dvd_sub' h₃ hβ‚…
lemma imo_2022_p5_13_13
-- (a : β„•)
(b p : β„•)
-- (hp : Nat.Prime p)
-- (hβ‚‚ : p ∣ a)
-- (hb2p : 2 * p ≀ b)
-- (g₁ : p ^ p ∣ a ^ p)
-- (gβ‚‚ : 2 ≀ p)
-- (h₃ : p ^ 2 ∣ a ^ p)
(g₃ : (2 * p)! ∣ b !)
(gβ‚„ : p ! ^ 2 ∣ (2 * p)!)
-- (gβ‚… : p ∣ p !)
(hβ‚„ : p ^ 2 ∣ p ! ^ 2) :
p ^ 2 ∣ b ! := by
refine dvd_trans ?_ g₃
exact dvd_trans hβ‚„ gβ‚„
lemma imo_2022_p5_13_14
-- (a : β„•)
(b p : β„•)
-- (hp : Nat.Prime p)
-- (hβ‚‚ : p ∣ a)
(hb2p : 2 * p ≀ b)
-- (g₁ : p ^ p ∣ a ^ p)
-- (gβ‚‚ : 2 ≀ p)
-- (h₃ : p ^ 2 ∣ a ^ p)
(gβ‚„ : p ! ^ 2 ∣ (2 * p)!)
-- (gβ‚… : p ∣ p !)
(hβ‚„ : p ^ 2 ∣ p ! ^ 2) :
p ^ 2 ∣ b ! := by
have g₃: (2*p).factorial ∣ b.factorial := by exact factorial_dvd_factorial hb2p
refine dvd_trans ?_ g₃
exact dvd_trans hβ‚„ gβ‚„
lemma imo_2022_p5_14
(a b p : β„•)
(hβ‚€ : 0 < a ∧ 0 < b)
(hp : Nat.Prime p)
(h₁ : a ^ p = b ! + p)
(hbp : b < p) :
(a, b, p) = (2, 2, 2) ∨ (a, b, p) = (3, 4, 3) := by
exfalso
by_cases hab: a ≀ b
. have hβ‚‚: a ∣ b.factorial := by exact Nat.dvd_factorial hβ‚€.1 hab
have g₃: a ∣ b.factorial + p := by
rw [← h₁]
refine dvd_pow_self a ?_
exact Nat.Prime.ne_zero hp
have h₃: a ∣ p := by exact (Nat.dvd_add_right hβ‚‚).mp g₃
have hβ‚„: a = 1 := by
have gβ‚„: a = 1 ∨ a = p := by
exact (Nat.dvd_prime hp).mp h₃
cases' gβ‚„ with gβ‚„β‚€ g₄₁
. exact gβ‚„β‚€
. exfalso
rw [← g₄₁] at hbp
linarith[hbp,hab]
rw [hβ‚„] at h₁
simp at h₁
have hβ‚…: 2 ≀ p := by exact Nat.Prime.two_le hp
have g₆: 0 < b.factorial := by exact Nat.factorial_pos b
have h₇: 1+2 ≀ b.factorial + p := by exact Nat.add_le_add g₆ hβ‚…
rw [← h₁] at h₇
linarith
. push_neg at hab
have hβ‚‚: (b+1)^p ≀ a^p := by
refine (Nat.pow_le_pow_iff_left ?_).mpr hab
exact Nat.Prime.ne_zero hp
have h₃: b^p + p*b + 1 ≀ (b+1)^p := by
ring_nf
rw [add_assoc]
exact imo_2022_p5_1 b p hβ‚€.2 hbp
have gβ‚„: p * 1 ≀ p * b := by
refine mul_le_mul ?_ ?_ ?_ ?_
. exact rfl.ge
. exact hβ‚€.2
. norm_num
. exact Nat.zero_le p
have gβ‚„: b.factorial ≀ b^b := by exact Nat.factorial_le_pow b
have gβ‚…: b^b ≀ b^p := by
refine Nat.pow_le_pow_of_le_right hβ‚€.2 ?_
exact le_of_lt hbp
linarith
lemma imo_2022_p5_14_1
(a b p : β„•)
(hβ‚€ : 0 < a ∧ 0 < b)
(hp : Nat.Prime p)
(h₁ : a ^ p = b ! + p)
(hbp : b < p)
(hab : a ≀ b) :
False := by
have hβ‚‚: a ∣ b.factorial := by exact Nat.dvd_factorial hβ‚€.1 hab
have g₃: a ∣ b.factorial + p := by
rw [← h₁]
refine dvd_pow_self a ?_
exact Nat.Prime.ne_zero hp
have h₃: a ∣ p := by exact (Nat.dvd_add_right hβ‚‚).mp g₃
have hβ‚„: a = 1 := by
have gβ‚„: a = 1 ∨ a = p := by
exact (Nat.dvd_prime hp).mp h₃
cases' gβ‚„ with gβ‚„β‚€ g₄₁
. exact gβ‚„β‚€
. exfalso
rw [← g₄₁] at hbp
linarith[hbp,hab]
rw [hβ‚„] at h₁
simp at h₁
have hβ‚…: 2 ≀ p := by exact Nat.Prime.two_le hp
have g₆: 0 < b.factorial := by exact Nat.factorial_pos b
have h₇: 1+2 ≀ b.factorial + p := by exact Nat.add_le_add g₆ hβ‚…
rw [← h₁] at h₇
linarith
lemma imo_2022_p5_14_2
(a b p : β„•)
(hβ‚€ : 0 < a ∧ 0 < b)
(hp : Nat.Prime p)
(h₁ : a ^ p = b ! + p)
(hbp : b < p)
(hab : a ≀ b)
(hβ‚‚ : a ∣ b !) :
False := by
have g₃: a ∣ b.factorial + p := by
rw [← h₁]
refine dvd_pow_self a ?_
exact Nat.Prime.ne_zero hp
have h₃: a ∣ p := by exact (Nat.dvd_add_right hβ‚‚).mp g₃
have hβ‚„: a = 1 := by
have gβ‚„: a = 1 ∨ a = p := by
exact (Nat.dvd_prime hp).mp h₃
cases' gβ‚„ with gβ‚„β‚€ g₄₁
. exact gβ‚„β‚€
. exfalso
rw [← g₄₁] at hbp
linarith[hbp,hab]
rw [hβ‚„] at h₁
simp at h₁
have hβ‚…: 2 ≀ p := by exact Nat.Prime.two_le hp
have g₆: 0 < b.factorial := by exact Nat.factorial_pos b
have h₇: 1+2 ≀ b.factorial + p := by exact Nat.add_le_add g₆ hβ‚…
rw [← h₁] at h₇
linarith
lemma imo_2022_p5_14_3
(a b p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
(hp : Nat.Prime p)
(h₁ : a ^ p = b ! + p) :
-- (hbp : b < p)
-- (hab : a ≀ b)
-- (hβ‚‚ : a ∣ b !) :
a ∣ b ! + p := by
rw [← h₁]
refine dvd_pow_self a ?_
exact Nat.Prime.ne_zero hp
lemma imo_2022_p5_14_4
(a b p : β„•)
(hβ‚€ : 0 < a ∧ 0 < b)
(hp : Nat.Prime p)
(h₁ : a ^ p = b ! + p)
(hbp : b < p)
(hab : a ≀ b)
(hβ‚‚ : a ∣ b !)
(g₃ : a ∣ b ! + p) :
False := by
have h₃: a ∣ p := by exact (Nat.dvd_add_right hβ‚‚).mp g₃
have hβ‚„: a = 1 := by
have gβ‚„: a = 1 ∨ a = p := by
exact (Nat.dvd_prime hp).mp h₃
cases' gβ‚„ with gβ‚„β‚€ g₄₁
. exact gβ‚„β‚€
. exfalso
rw [← g₄₁] at hbp
linarith[hbp,hab]
rw [hβ‚„] at h₁
simp at h₁
have hβ‚…: 2 ≀ p := by exact Nat.Prime.two_le hp
have g₆: 0 < b.factorial := by exact Nat.factorial_pos b
have h₇: 1 + 2 ≀ b.factorial + p := by exact Nat.add_le_add g₆ hβ‚…
rw [← h₁] at h₇
linarith
lemma imo_2022_p5_14_5
(a b p : β„•)
(hβ‚€ : 0 < a ∧ 0 < b)
(hp : Nat.Prime p)
(h₁ : a ^ p = b ! + p)
(hbp : b < p)
(hab : a ≀ b)
(hβ‚‚ : a ∣ b !)
(g₃ : a ∣ b ! + p)
(h₃ : a ∣ p) :
False := by
have hβ‚„: a = 1 := by
have gβ‚„: a = 1 ∨ a = p := by
exact (Nat.dvd_prime hp).mp h₃
cases' gβ‚„ with gβ‚„β‚€ g₄₁
. exact gβ‚„β‚€
. exfalso
rw [← g₄₁] at hbp
linarith[hbp,hab]
rw [hβ‚„] at h₁
simp at h₁
have hβ‚…: 2 ≀ p := by exact Nat.Prime.two_le hp
have g₆: 0 < b.factorial := by exact Nat.factorial_pos b
have h₇: 1+2 ≀ b.factorial + p := by exact Nat.add_le_add g₆ hβ‚…
rw [← h₁] at h₇
linarith
lemma imo_2022_p5_14_6
(a b p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
(hp : Nat.Prime p)
-- (h₁ : a ^ p = b ! + p)
(hbp : b < p)
(hab : a ≀ b)
(hβ‚‚ : a ∣ b !)
(g₃ : a ∣ b ! + p)
(h₃ : a ∣ p) :
a = 1 := by
have gβ‚„: a = 1 ∨ a = p := by
exact (Nat.dvd_prime hp).mp h₃
cases' gβ‚„ with gβ‚„β‚€ g₄₁
. exact gβ‚„β‚€
. exfalso
rw [← g₄₁] at hbp
linarith[hbp,hab]
lemma imo_2022_p5_14_7
(a b p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
-- (hp : Nat.Prime p)
-- (h₁ : a ^ p = b ! + p)
(hbp : b < p)
(hab : a ≀ b)
(hβ‚‚ : a ∣ b !)
(g₃ : a ∣ b ! + p)
(h₃ : a ∣ p)
(gβ‚„ : a = 1 ∨ a = p) :
a = 1 := by
cases' gβ‚„ with gβ‚„β‚€ g₄₁
. exact gβ‚„β‚€
. exfalso
rw [← g₄₁] at hbp
linarith[hbp,hab]
lemma imo_2022_p5_14_8
(a b p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
-- (hp : Nat.Prime p)
-- (h₁ : a ^ p = b ! + p)
(hbp : b < p)
(hab : a ≀ b)
(hβ‚‚ : a ∣ b !)
(g₃ : a ∣ b ! + p)
(h₃ : a ∣ p)
(g₄₁ : a = p) :
a = 1 := by
exfalso
rw [← g₄₁] at hbp
linarith[hbp,hab]
lemma imo_2022_p5_14_9
(a b p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
-- (hp : Nat.Prime p)
-- (h₁ : a ^ p = b ! + p)
(hbp : b < p)
(hab : a ≀ b)
(hβ‚‚ : a ∣ b !)
(g₃ : a ∣ b ! + p)
(h₃ : a ∣ p)
(g₄₁ : a = p) :
False := by
rw [← g₄₁] at hbp
linarith[hbp,hab]
lemma imo_2022_p5_14_10
(a b p : β„•)
(hβ‚€ : 0 < a ∧ 0 < b)
(hp : Nat.Prime p)
(h₁ : a ^ p = b ! + p)
(hbp : b < p)
(hab : a ≀ b)
(hβ‚‚ : a ∣ b !)
(g₃ : a ∣ b ! + p)
(h₃ : a ∣ p)
(hβ‚„ : a = 1) :
False := by
rw [hβ‚„] at h₁
simp at h₁
have hβ‚…: 2 ≀ p := by exact Nat.Prime.two_le hp
have g₆: 0 < b.factorial := by exact Nat.factorial_pos b
have h₇: 1+2 ≀ b.factorial + p := by exact Nat.add_le_add g₆ hβ‚…
rw [← h₁] at h₇
linarith
lemma imo_2022_p5_14_11
(a b p : β„•)
(hβ‚€ : 0 < a ∧ 0 < b)
(hp : Nat.Prime p)
(hbp : b < p)
-- (hab : a ≀ b)
-- (hβ‚‚ : a ∣ b !)
-- (g₃ : a ∣ b ! + p)
-- (h₃ : a ∣ p)
-- (hβ‚„ : a = 1)
(h₁ : 1 = b ! + p) :
False := by
have hβ‚…: 2 ≀ p := by exact Nat.Prime.two_le hp
have g₆: 0 < b.factorial := by exact Nat.factorial_pos b
have h₇: 1+2 ≀ b.factorial + p := by exact Nat.add_le_add g₆ hβ‚…
rw [← h₁] at h₇
linarith
lemma imo_2022_p5_14_12
(a b p : β„•)
(hβ‚€ : 0 < a ∧ 0 < b)
-- (hp : Nat.Prime p)
(hbp : b < p)
-- (hab : a ≀ b)
-- (hβ‚‚ : a ∣ b !)
-- (g₃ : a ∣ b ! + p)
-- (h₃ : a ∣ p)
-- (hβ‚„ : a = 1)
(h₁ : 1 = b ! + p)
(hβ‚… : 2 ≀ p) :
False := by
have g₆: 0 < b.factorial := by exact Nat.factorial_pos b
have h₇: 1+2 ≀ b.factorial + p := by exact Nat.add_le_add g₆ hβ‚…
rw [← h₁] at h₇
linarith
lemma imo_2022_p5_14_13
(a b p : β„•)
(hβ‚€ : 0 < a ∧ 0 < b)
-- (hp : Nat.Prime p)
(hbp : b < p)
-- (hab : a ≀ b)
-- (hβ‚‚ : a ∣ b !)
-- (g₃ : a ∣ b ! + p)
-- (h₃ : a ∣ p)
-- (hβ‚„ : a = 1)
(h₁ : 1 = b ! + p)
(hβ‚… : 2 ≀ p)
(g₆ : 0 < b !) :
False := by
have h₇: 1+2 ≀ b.factorial + p := by exact Nat.add_le_add g₆ hβ‚…
rw [← h₁] at h₇
linarith
lemma imo_2022_p5_14_14
(a b p : β„•)
(hβ‚€ : 0 < a ∧ 0 < b)
-- (hp : Nat.Prime p)
(hbp : b < p)
-- (hab : a ≀ b)
-- (hβ‚‚ : a ∣ b !)
-- (g₃ : a ∣ b ! + p)
-- (h₃ : a ∣ p)
-- (hβ‚„ : a = 1)
(h₁ : 1 = b ! + p) :
-- (hβ‚… : 2 ≀ p) :
1 ≀ b ! := by
have g₆: 0 < b.factorial := by exact Nat.factorial_pos b
linarith [g₆]
lemma imo_2022_p5_14_15
(a b p : β„•)
(hβ‚€ : 0 < a ∧ 0 < b)
-- (hp : Nat.Prime p)
(hbp : b < p)
-- (hab : a ≀ b)
-- (hβ‚‚ : a ∣ b !)
-- (g₃ : a ∣ b ! + p)
-- (h₃ : a ∣ p)
-- (hβ‚„ : a = 1)
(h₁ : 1 = b ! + p)
(hβ‚… : 2 ≀ p)
(g₆ : 0 < b !) :
-- (h₆ : 1 ≀ b !) :
False := by
have h₇: 1+2 ≀ b.factorial + p := by exact Nat.add_le_add g₆ hβ‚…
rw [← h₁] at h₇
linarith
lemma imo_2022_p5_14_16
-- (a : β„•)
(b p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
(hp : Nat.Prime p) :
-- (hbp : b < p)
-- (hab : a ≀ b)
-- (hβ‚‚ : a ∣ b !)
-- (g₃ : a ∣ b ! + p)
-- (h₃ : a ∣ p)
-- (hβ‚„ : a = 1)
-- (h₁ : 1 = b ! + p)
-- (h₆ : 1 ≀ b !) :
1 + 2 ≀ b ! + p := by
have hβ‚…: 2 ≀ p := by exact Nat.Prime.two_le hp
have g₆: 0 < b.factorial := by exact Nat.factorial_pos b
exact Nat.add_le_add g₆ hβ‚…
lemma imo_2022_p5_14_17
(a b p : β„•)
(hβ‚€ : 0 < a ∧ 0 < b)
-- (hp : Nat.Prime p)
(hbp : b < p)
-- (hab : a ≀ b)
-- (hβ‚‚ : a ∣ b !)
-- (g₃ : a ∣ b ! + p)
-- (h₃ : a ∣ p)
-- (hβ‚„ : a = 1)
(h₁ : 1 = b ! + p)
-- (hβ‚… : 2 ≀ p)
-- (g₆ : 0 < b !)
-- (h₆ : 1 ≀ b !)
(h₇ : 1 + 2 ≀ b ! + p) :
False := by
rw [← h₁] at h₇
linarith
lemma imo_2022_p5_14_18
(a b p : β„•)
(hβ‚€ : 0 < a ∧ 0 < b)
(hp : Nat.Prime p)
(h₁ : a ^ p = b ! + p)
(hbp : b < p)
(hab : b < a) :
False := by
have hβ‚‚: (b+1)^p ≀ a^p := by
refine (Nat.pow_le_pow_iff_left ?_).mpr hab
exact Nat.Prime.ne_zero hp
have h₃: b^p + p*b + 1 ≀ (b+1)^p := by
ring_nf
rw [add_assoc]
exact imo_2022_p5_1 b p hβ‚€.2 hbp
have gβ‚„: p * 1 ≀ p * b := by
refine mul_le_mul ?_ ?_ ?_ ?_
. exact rfl.ge
. exact hβ‚€.2
. norm_num
. exact Nat.zero_le p
have gβ‚„: b.factorial ≀ b^b := by exact Nat.factorial_le_pow b
have gβ‚…: b^b ≀ b^p := by
refine Nat.pow_le_pow_of_le_right hβ‚€.2 ?_
exact le_of_lt hbp
linarith
lemma imo_2022_p5_14_19
(a b p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
(hp : Nat.Prime p)
-- (h₁ : a ^ p = b ! + p)
-- (hbp : b < p)
(hab : b < a) :
(b + 1) ^ p ≀ a ^ p := by
refine (Nat.pow_le_pow_iff_left ?_).mpr hab
exact Nat.Prime.ne_zero hp
lemma imo_2022_p5_14_20
(a b p : β„•)
(hβ‚€ : 0 < a ∧ 0 < b)
-- (hp : Nat.Prime p)
(h₁ : a ^ p = b ! + p)
(hbp : b < p)
-- (hab : b < a)
(hβ‚‚ : (b + 1) ^ p ≀ a ^ p) :
False := by
have h₃: b^p + p*b + 1 ≀ (b+1)^p := by
ring_nf
rw [add_assoc]
exact imo_2022_p5_1 b p hβ‚€.2 hbp
have gβ‚„: p * 1 ≀ p * b := by
refine mul_le_mul ?_ ?_ ?_ ?_
. exact rfl.ge
. exact hβ‚€.2
. norm_num
. exact Nat.zero_le p
have gβ‚„: b.factorial ≀ b^b := by exact Nat.factorial_le_pow b
have gβ‚…: b^b ≀ b^p := by
refine Nat.pow_le_pow_of_le_right hβ‚€.2 ?_
exact le_of_lt hbp
linarith
lemma imo_2022_p5_14_21
(a b p : β„•)
(hβ‚€ : 0 < a ∧ 0 < b)
-- (hp : Nat.Prime p)
-- (h₁ : a ^ p = b ! + p)
(hbp : b < p) :
-- (hab : b < a)
-- (hβ‚‚ : (b + 1) ^ p ≀ a ^ p) :
b ^ p + p * b + 1 ≀ (b + 1) ^ p := by
ring_nf
rw [add_assoc]
exact imo_2022_p5_1 b p hβ‚€.2 hbp
lemma imo_2022_p5_14_22
(a b p : β„•)
(hβ‚€ : 0 < a ∧ 0 < b)
-- (hp : Nat.Prime p)
(h₁ : a ^ p = b ! + p)
(hbp : b < p)
-- (hab : b < a)
(hβ‚‚ : (b + 1) ^ p ≀ a ^ p)
(h₃ : b ^ p + p * b + 1 ≀ (b + 1) ^ p) :
False := by
have gβ‚„: p * 1 ≀ p * b := by
refine mul_le_mul ?_ ?_ ?_ ?_
. exact rfl.ge
. exact hβ‚€.2
. norm_num
. exact Nat.zero_le p
have gβ‚„: b.factorial ≀ b^b := by exact Nat.factorial_le_pow b
have gβ‚…: b^b ≀ b^p := by
refine Nat.pow_le_pow_of_le_right hβ‚€.2 ?_
exact le_of_lt hbp
linarith
lemma imo_2022_p5_14_23
(a b p : β„•)
(hβ‚€ : 0 < a ∧ 0 < b) :
-- (hp : Nat.Prime p)
-- (h₁ : a ^ p = b ! + p)
-- (hbp : b < p)
-- (hab : b < a)
-- (hβ‚‚ : (b + 1) ^ p ≀ a ^ p)
-- (h₃ : b ^ p + p * b + 1 ≀ (b + 1) ^ p) :
p * 1 ≀ p * b := by
refine mul_le_mul ?_ ?_ ?_ ?_
. exact rfl.ge
. exact hβ‚€.2
. norm_num
. exact Nat.zero_le p
lemma imo_2022_p5_14_24
(a b p : β„•)
(hβ‚€ : 0 < a ∧ 0 < b)
-- (hp : Nat.Prime p)
(h₁ : a ^ p = b ! + p)
(hbp : b < p)
-- (hab : b < a)
(hβ‚‚ : (b + 1) ^ p ≀ a ^ p)
(h₃ : b ^ p + p * b + 1 ≀ (b + 1) ^ p)
(gβ‚„ : p * 1 ≀ p * b) :
False := by
have gβ‚„: b.factorial ≀ b^b := by exact Nat.factorial_le_pow b
have gβ‚…: b^b ≀ b^p := by
refine Nat.pow_le_pow_of_le_right hβ‚€.2 ?_
exact le_of_lt hbp
linarith
lemma imo_2022_p5_14_25
(a b p : β„•)
(hβ‚€ : 0 < a ∧ 0 < b)
-- (hp : Nat.Prime p)
(h₁ : a ^ p = b ! + p)
(hbp : b < p)
-- (hab : b < a)
(hβ‚‚ : (b + 1) ^ p ≀ a ^ p)
(h₃ : b ^ p + p * b + 1 ≀ (b + 1) ^ p)
-- (gβ‚„ : p * 1 ≀ p * b)
(hβ‚„ : b ^ p + p < b ^ p + p * b + 1) :
False := by
have gβ‚„: b.factorial ≀ b^b := by exact Nat.factorial_le_pow b
have gβ‚…: b^b ≀ b^p := by
refine Nat.pow_le_pow_of_le_right hβ‚€.2 ?_
exact le_of_lt hbp
linarith
lemma imo_2022_p5_14_26
(a b p : β„•)
(hβ‚€ : 0 < a ∧ 0 < b)
-- (hp : Nat.Prime p)
(h₁ : a ^ p = b ! + p)
(hbp : b < p)
-- (hab : b < a)
(hβ‚‚ : (b + 1) ^ p ≀ a ^ p)
(h₃ : b ^ p + p * b + 1 ≀ (b + 1) ^ p)
-- (g4 : p * 1 ≀ p * b)
(hβ‚„ : b ^ p + p < b ^ p + p * b + 1)
(gβ‚„ : b ! ≀ b ^ b) :
False := by
have gβ‚…: b^b ≀ b^p := by
refine Nat.pow_le_pow_of_le_right hβ‚€.2 ?_
exact le_of_lt hbp
linarith
lemma imo_2022_p5_14_27
(a b p : β„•)
(hβ‚€ : 0 < a ∧ 0 < b)
-- (hp : Nat.Prime p)
-- (h₁ : a ^ p = b ! + p)
(hbp : b < p) :
-- (hab : b < a)
-- (hβ‚‚ : (b + 1) ^ p ≀ a ^ p)
-- (h₃ : b ^ p + p * b + 1 ≀ (b + 1) ^ p)
-- (g4 : p * 1 ≀ p * b)
-- (hβ‚„ : b ^ p + p < b ^ p + p * b + 1)
-- (gβ‚„ : b ! ≀ b ^ b) :
b ^ b ≀ b ^ p := by
refine Nat.pow_le_pow_of_le_right hβ‚€.2 ?_
exact le_of_lt hbp
lemma imo_2022_p5_15
(a b p : β„•)
(hβ‚€ : 0 < a ∧ 0 < b)
(hp : Nat.Prime p)
(h₁ : a ^ p = b ! + p)
(hbp : p ≀ b) :
(a, b, p) = (2, 2, 2) ∨ (a, b, p) = (3, 4, 3) := by
have hβ‚‚: p ∣ a := by exact imo_2022_p5_3 a b p hp h₁ hbp
by_cases hb2p: b < 2*p
. have h₃: a = p := by exact imo_2022_p5_8 a b p hβ‚€ hp h₁ hbp hβ‚‚ hb2p
rw [h₃] at h₁
by_cases hp5: p < 5
. have hβ‚„: 2 ≀ p := by exact Prime.two_le hp
interval_cases p
. left
norm_num at h₁
have hβ‚„: b.factorial = 2 := by linarith
have gβ‚…: (2:β„•).factorial = 2 := by norm_num
rw [← gβ‚…] at hβ‚„
have hβ‚…: b = 2 := by
refine (Nat.factorial_inj ?_).mp hβ‚„
linarith
rw [h₃,hβ‚…]
. right
norm_num at h₁
rw [h₃]
have hβ‚„: b.factorial = 24 := by linarith
have gβ‚…: (4:β„•).factorial = 24 := by exact rfl
rw [← gβ‚…] at hβ‚„
have hβ‚…: b = 4 := by
refine (Nat.factorial_inj ?_).mp hβ‚„
linarith
rw [hβ‚…]
. exfalso
contradiction
. push_neg at hp5
exfalso
-- lifting the exponent
exact imo_2022_p5_12 b p hp hbp h₁ hp5
. push_neg at hb2p
exfalso
have h₃: p^2 ∣ a^p - b.factorial := by exact imo_2022_p5_13 a b p hp hβ‚‚ hb2p
have g₃: b.factorial ≀ a^p := by exact le.intro (h₁.symm)
have gβ‚„: a^p - b.factorial = p := by
rw [add_comm] at h₁
exact (Nat.sub_eq_iff_eq_add g₃).mpr h₁
have hβ‚„: p^2 ∣ p := by
rw [gβ‚„] at h₃
exact h₃
have gp: 0 < p := by exact Prime.pos hp
have hβ‚…: p^2 ≀ p := by exact Nat.le_of_dvd gp hβ‚„
have g₆: 1 < p := by exact Prime.one_lt hp
have h₆: p^1 < p^2 := by exact Nat.pow_lt_pow_succ g₆
linarith
lemma imo_2022_p5_15_1
(a b p : β„•)
(hβ‚€ : 0 < a ∧ 0 < b)
(hp : Nat.Prime p)
(h₁ : a ^ p = b ! + p)
(hbp : p ≀ b)
(hβ‚‚ : p ∣ a) :
(a, b, p) = (2, 2, 2) ∨ (a, b, p) = (3, 4, 3) := by
by_cases hb2p: b < 2*p
. have h₃: a = p := by exact imo_2022_p5_8 a b p hβ‚€ hp h₁ hbp hβ‚‚ hb2p
rw [h₃] at h₁
by_cases hp5: p < 5
. have hβ‚„: 2 ≀ p := by exact Prime.two_le hp
interval_cases p
. left
norm_num at h₁
have hβ‚„: b.factorial = 2 := by linarith
have gβ‚…: (2:β„•).factorial = 2 := by norm_num
rw [← gβ‚…] at hβ‚„
have hβ‚…: b = 2 := by
refine (Nat.factorial_inj ?_).mp hβ‚„
linarith
rw [h₃,hβ‚…]
. right
norm_num at h₁
rw [h₃]
have hβ‚„: b.factorial = 24 := by linarith
have gβ‚…: (4:β„•).factorial = 24 := by exact rfl
rw [← gβ‚…] at hβ‚„
have hβ‚…: b = 4 := by
refine (Nat.factorial_inj ?_).mp hβ‚„
linarith
rw [hβ‚…]
. exfalso
contradiction
. push_neg at hp5
exfalso
-- lifting the exponent
exact imo_2022_p5_12 b p hp hbp h₁ hp5
. push_neg at hb2p
exfalso
have h₃: p^2 ∣ a^p - b.factorial := by exact imo_2022_p5_13 a b p hp hβ‚‚ hb2p
have g₃: b.factorial ≀ a^p := by exact le.intro (h₁.symm)
have gβ‚„: a^p - b.factorial = p := by
rw [add_comm] at h₁
exact (Nat.sub_eq_iff_eq_add g₃).mpr h₁
have hβ‚„: p^2 ∣ p := by
rw [gβ‚„] at h₃
exact h₃
have gp: 0 < p := by exact Prime.pos hp
have hβ‚…: p^2 ≀ p := by exact Nat.le_of_dvd gp hβ‚„
have g₆: 1 < p := by exact Prime.one_lt hp
have h₆: p^1 < p^2 := by exact Nat.pow_lt_pow_succ g₆
linarith
lemma imo_2022_p5_15_2
(a b p : β„•)
(hβ‚€ : 0 < a ∧ 0 < b)
(hp : Nat.Prime p)
(h₁ : a ^ p = b ! + p)
(hbp : p ≀ b)
(hβ‚‚ : p ∣ a)
(hb2p : b < 2 * p) :
(a, b, p) = (2, 2, 2) ∨ (a, b, p) = (3, 4, 3) := by
have h₃: a = p := by exact imo_2022_p5_8 a b p hβ‚€ hp h₁ hbp hβ‚‚ hb2p
rw [h₃] at h₁
by_cases hp5: p < 5
. have hβ‚„: 2 ≀ p := by exact Prime.two_le hp
interval_cases p
. left
norm_num at h₁
have hβ‚„: b.factorial = 2 := by linarith
have gβ‚…: (2:β„•).factorial = 2 := by norm_num
rw [← gβ‚…] at hβ‚„
have hβ‚…: b = 2 := by
refine (Nat.factorial_inj ?_).mp hβ‚„
linarith
rw [h₃,hβ‚…]
. right
norm_num at h₁
rw [h₃]
have hβ‚„: b.factorial = 24 := by linarith
have gβ‚…: (4:β„•).factorial = 24 := by exact rfl
rw [← gβ‚…] at hβ‚„
have hβ‚…: b = 4 := by
refine (Nat.factorial_inj ?_).mp hβ‚„
linarith
rw [hβ‚…]
. exfalso
contradiction
. push_neg at hp5
exfalso
-- lifting the exponent
exact imo_2022_p5_12 b p hp hbp h₁ hp5
lemma imo_2022_p5_15_3
(a b p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
(hp : Nat.Prime p)
(h₁ : a ^ p = b ! + p)
(hbp : p ≀ b)
(hβ‚‚ : p ∣ a)
(hb2p : b < 2 * p)
(h₃ : a = p) :
(a, b, p) = (2, 2, 2) ∨ (a, b, p) = (3, 4, 3) := by
rw [h₃] at h₁
by_cases hp5: p < 5
. have hβ‚„: 2 ≀ p := by exact Prime.two_le hp
interval_cases p
. left
norm_num at h₁
have hβ‚„: b.factorial = 2 := by linarith
have gβ‚…: (2:β„•).factorial = 2 := by norm_num
rw [← gβ‚…] at hβ‚„
have hβ‚…: b = 2 := by
refine (Nat.factorial_inj ?_).mp hβ‚„
linarith
rw [h₃,hβ‚…]
. right
norm_num at h₁
rw [h₃]
have hβ‚„: b.factorial = 24 := by linarith
have gβ‚…: (4:β„•).factorial = 24 := by exact rfl
rw [← gβ‚…] at hβ‚„
have hβ‚…: b = 4 := by
refine (Nat.factorial_inj ?_).mp hβ‚„
linarith
rw [hβ‚…]
. exfalso
contradiction
. push_neg at hp5
exfalso
-- lifting the exponent
exact imo_2022_p5_12 b p hp hbp h₁ hp5
lemma imo_2022_p5_15_4
(a b p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
(hp : Nat.Prime p)
(h₁ : p ^ p = b ! + p)
(hbp : p ≀ b)
(hβ‚‚ : p ∣ a)
(hb2p : b < 2 * p)
(h₃ : a = p)
(hp5 : p < 5) :
(a, b, p) = (2, 2, 2) ∨ (a, b, p) = (3, 4, 3) := by
have hβ‚„: 2 ≀ p := by exact Prime.two_le hp
interval_cases p
. left
norm_num at h₁
have hβ‚„: b.factorial = 2 := by linarith
have gβ‚…: (2:β„•).factorial = 2 := by norm_num
rw [← gβ‚…] at hβ‚„
have hβ‚…: b = 2 := by
refine (Nat.factorial_inj ?_).mp hβ‚„
linarith
rw [h₃,hβ‚…]
. right
norm_num at h₁
rw [h₃]
have hβ‚„: b.factorial = 24 := by linarith
have gβ‚…: (4:β„•).factorial = 24 := by exact rfl
rw [← gβ‚…] at hβ‚„
have hβ‚…: b = 4 := by
refine (Nat.factorial_inj ?_).mp hβ‚„
linarith
rw [hβ‚…]
. exfalso
contradiction
lemma imo_2022_p5_15_5
(a b p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
(hp : Nat.Prime p)
(h₁ : p ^ p = b ! + p)
(hbp : p ≀ b)
(hβ‚‚ : p ∣ a)
(hb2p : b < 2 * p)
(h₃ : a = p)
(hp5 : p < 5)
(hβ‚„ : 2 ≀ p) :
(a, b, p) = (2, 2, 2) ∨ (a, b, p) = (3, 4, 3) := by
interval_cases p
. left
norm_num at h₁
have hβ‚„: b.factorial = 2 := by linarith
have gβ‚…: (2:β„•).factorial = 2 := by norm_num
rw [← gβ‚…] at hβ‚„
have hβ‚…: b = 2 := by
refine (Nat.factorial_inj ?_).mp hβ‚„
linarith
rw [h₃,hβ‚…]
. right
norm_num at h₁
rw [h₃]
have hβ‚„: b.factorial = 24 := by linarith
have gβ‚…: (4:β„•).factorial = 24 := by exact rfl
rw [← gβ‚…] at hβ‚„
have hβ‚…: b = 4 := by
refine (Nat.factorial_inj ?_).mp hβ‚„
linarith
rw [hβ‚…]
. exfalso
contradiction
lemma imo_2022_p5_15_6
(a b : β„•)
-- (p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
-- (hp : Nat.Prime 2)
(h₁ : 2 ^ 2 = b ! + 2)
(hbp : 2 ≀ b)
-- (hβ‚‚ : 2 ∣ a)
-- (hb2p : b < 2 * 2)
(h₃ : a = 2) :
-- (hp5 : 2 < 5)
-- (hβ‚„ : 2 ≀ 2) :
(a, b, 2) = (2, 2, 2) ∨ (a, b, 2) = (3, 4, 3) := by
left
norm_num at h₁
have hβ‚„: b.factorial = 2 := by linarith
have gβ‚…: (2:β„•).factorial = 2 := by norm_num
rw [← gβ‚…] at hβ‚„
have hβ‚…: b = 2 := by
refine (Nat.factorial_inj ?_).mp hβ‚„
linarith
rw [h₃,hβ‚…]
lemma imo_2022_p5_15_7
(a b : β„•)
-- (p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
-- (hp : Nat.Prime 2)
(hbp : 2 ≀ b)
-- (hβ‚‚ : 2 ∣ a)
-- (hb2p : b < 2 * 2)
(h₃ : a = 2)
-- (hp5 : 2 < 5)
-- (hβ‚„ : 2 ≀ 2)
(h₁ : 2 = b !) :
(a, b, 2) = (2, 2, 2) := by
have hβ‚„: b.factorial = 2 := by linarith
have gβ‚…: (2:β„•).factorial = 2 := by norm_num
rw [← gβ‚…] at hβ‚„
have hβ‚…: b = 2 := by
refine (Nat.factorial_inj ?_).mp hβ‚„
linarith
rw [h₃,hβ‚…]
lemma imo_2022_p5_15_8
-- (a p : β„•)
(b : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
-- (hp : Nat.Prime 2)
(hbp : 2 ≀ b)
-- (hβ‚‚ : 2 ∣ a)
-- (hb2p : b < 2 * 2)
-- (h₃ : a = 2)
-- (hp5 : 2 < 5)
-- (h4 : 2 ≀ 2)
-- (h₁ : 2 = b !)
(hβ‚„ : b ! = 2!) :
-- (gβ‚… : 2! = 2) :
b = 2 := by
refine (Nat.factorial_inj ?_).mp hβ‚„
linarith
lemma imo_2022_p5_15_9
(a b : β„•)
-- (p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
-- (hp : Nat.Prime 3)
(h₁ : 3 ^ 3 = b ! + 3)
(hbp : 3 ≀ b)
-- (hβ‚‚ : 3 ∣ a)
-- (hb2p : b < 2 * 3)
(h₃ : a = 3) :
-- (hp5 : 3 < 5)
-- (hβ‚„ : 2 ≀ 3) :
(a, b, 3) = (2, 2, 2) ∨ (a, b, 3) = (3, 4, 3) := by
right
norm_num at h₁
rw [h₃]
have hβ‚„: b.factorial = 24 := by linarith
have gβ‚…: (4:β„•).factorial = 24 := by exact rfl
rw [← gβ‚…] at hβ‚„
have hβ‚…: b = 4 := by
refine (Nat.factorial_inj ?_).mp hβ‚„
linarith
rw [hβ‚…]
lemma imo_2022_p5_15_10
(a b : β„•)
-- (p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
-- (hp : Nat.Prime 3)
(hbp : 3 ≀ b)
-- (hβ‚‚ : 3 ∣ a)
-- (hb2p : b < 2 * 3)
(h₃ : a = 3)
-- (hp5 : 3 < 5)
-- (hβ‚„ : 2 ≀ 3)
(h₁ : 24 = b !) :
(a, b, 3) = (3, 4, 3) := by
rw [h₃]
have hβ‚„: b.factorial = 24 := by linarith
have gβ‚…: (4:β„•).factorial = 24 := by exact rfl
rw [← gβ‚…] at hβ‚„
have hβ‚…: b = 4 := by
refine (Nat.factorial_inj ?_).mp hβ‚„
linarith
rw [hβ‚…]
lemma imo_2022_p5_15_11
(b : β„•)
-- (a p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
-- (hp : Nat.Prime 3)
(hbp : 3 ≀ b)
-- (hβ‚‚ : 3 ∣ a)
-- (hb2p : b < 2 * 3)
-- (h₃ : a = 3)
-- (hp5 : 3 < 5)
-- (h4 : 2 ≀ 3)
-- (h₁ : 24 = b !)
(hβ‚„ : b ! = 4!) :
-- (gβ‚… : 4! = 24) :
b = 4 := by
refine (Nat.factorial_inj ?_).mp hβ‚„
linarith
lemma imo_2022_p5_15_12
(a b : β„•)
-- (p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
(hp : Nat.Prime 4) :
-- (h₁ : 4 ^ 4 = b ! + 4)
-- (hbp : 4 ≀ b)
-- (hβ‚‚ : 4 ∣ a)
-- (hb2p : b < 2 * 4)
-- (h₃ : a = 4)
-- (hp5 : 4 < 5)
-- (hβ‚„ : 2 ≀ 4) :
(a, b, 4) = (2, 2, 2) ∨ (a, b, 4) = (3, 4, 3) := by
exfalso
contradiction
lemma imo_2022_p5_15_13
(a b p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
(hp : Nat.Prime p)
(h₁ : p ^ p = b ! + p)
(hbp : p ≀ b)
-- (hβ‚‚ : p ∣ a)
-- (hb2p : b < 2 * p)
-- (h₃ : a = p)
(hp5 : 5 ≀ p) :
(a, b, p) = (2, 2, 2) ∨ (a, b, p) = (3, 4, 3) := by
exfalso
-- lifting the exponent
exact imo_2022_p5_12 b p hp hbp h₁ hp5
lemma imo_2022_p5_15_14
(a b p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
(hp : Nat.Prime p)
(h₁ : a ^ p = b ! + p)
-- (hbp : p ≀ b)
(hβ‚‚ : p ∣ a)
(hb2p : 2 * p ≀ b) :
(a, b, p) = (2, 2, 2) ∨ (a, b, p) = (3, 4, 3) := by
exfalso
have h₃: p^2 ∣ a^p - b.factorial := by exact imo_2022_p5_13 a b p hp hβ‚‚ hb2p
have g₃: b.factorial ≀ a^p := by exact le.intro (h₁.symm)
have gβ‚„: a^p - b.factorial = p := by
rw [add_comm] at h₁
exact (Nat.sub_eq_iff_eq_add g₃).mpr h₁
have hβ‚„: p^2 ∣ p := by
rw [gβ‚„] at h₃
exact h₃
have gp: 0 < p := by exact Prime.pos hp
have hβ‚…: p^2 ≀ p := by exact Nat.le_of_dvd gp hβ‚„
have g₆: 1 < p := by exact Prime.one_lt hp
have h₆: p^1 < p^2 := by exact Nat.pow_lt_pow_succ g₆
linarith
lemma imo_2022_p5_15_15
(a b p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
(hp : Nat.Prime p)
(h₁ : a ^ p = b ! + p)
-- (hbp : p ≀ b)
(hβ‚‚ : p ∣ a)
(hb2p : 2 * p ≀ b) :
False := by
have h₃: p^2 ∣ a^p - b.factorial := by exact imo_2022_p5_13 a b p hp hβ‚‚ hb2p
have g₃: b.factorial ≀ a^p := by exact le.intro (h₁.symm)
have gβ‚„: a^p - b.factorial = p := by
rw [add_comm] at h₁
exact (Nat.sub_eq_iff_eq_add g₃).mpr h₁
have hβ‚„: p^2 ∣ p := by
rw [gβ‚„] at h₃
exact h₃
have gp: 0 < p := by exact Prime.pos hp
have hβ‚…: p^2 ≀ p := by exact Nat.le_of_dvd gp hβ‚„
have g₆: 1 < p := by exact Prime.one_lt hp
have h₆: p^1 < p^2 := by exact Nat.pow_lt_pow_succ g₆
linarith
lemma imo_2022_p5_15_16
(a b p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
(hp : Nat.Prime p)
(h₁ : a ^ p = b ! + p)
-- (hbp : p ≀ b)
-- (hβ‚‚ : p ∣ a)
-- (hb2p : 2 * p ≀ b)
(h₃ : p ^ 2 ∣ a ^ p - b !) :
False := by
have g₃: b.factorial ≀ a^p := by exact le.intro (h₁.symm)
have gβ‚„: a^p - b.factorial = p := by
rw [add_comm] at h₁
exact (Nat.sub_eq_iff_eq_add g₃).mpr h₁
have hβ‚„: p^2 ∣ p := by
rw [gβ‚„] at h₃
exact h₃
have gp: 0 < p := by exact Prime.pos hp
have hβ‚…: p^2 ≀ p := by exact Nat.le_of_dvd gp hβ‚„
have g₆: 1 < p := by exact Prime.one_lt hp
have h₆: p^1 < p^2 := by exact Nat.pow_lt_pow_succ g₆
linarith
lemma imo_2022_p5_15_17
(a b p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
(hp : Nat.Prime p)
(h₁ : a ^ p = b ! + p)
-- (hbp : p ≀ b)
-- (hβ‚‚ : p ∣ a)
-- (hb2p : 2 * p ≀ b)
(h₃ : p ^ 2 ∣ a ^ p - b !)
(g₃ : b ! ≀ a ^ p) :
False := by
have gβ‚„: a^p - b.factorial = p := by
rw [add_comm] at h₁
exact (Nat.sub_eq_iff_eq_add g₃).mpr h₁
have hβ‚„: p^2 ∣ p := by
rw [gβ‚„] at h₃
exact h₃
have gp: 0 < p := by exact Prime.pos hp
have hβ‚…: p^2 ≀ p := by exact Nat.le_of_dvd gp hβ‚„
have g₆: 1 < p := by exact Prime.one_lt hp
have h₆: p^1 < p^2 := by exact Nat.pow_lt_pow_succ g₆
linarith
lemma imo_2022_p5_15_18
(a b p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
-- (hp : Nat.Prime p)
(h₁ : a ^ p = b ! + p)
(hbp : p ≀ b)
(hβ‚‚ : p ∣ a)
(hb2p : 2 * p ≀ b)
(h₃ : p ^ 2 ∣ a ^ p - b !)
(g₃ : b ! ≀ a ^ p) :
a ^ p - b ! = p := by
rw [add_comm] at h₁
exact (Nat.sub_eq_iff_eq_add g₃).mpr h₁
lemma imo_2022_p5_15_19
(a b p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
(hp : Nat.Prime p)
-- (h₁ : a ^ p = b ! + p)
-- (hbp : p ≀ b)
-- (hβ‚‚ : p ∣ a)
-- (hb2p : 2 * p ≀ b)
(h₃ : p ^ 2 ∣ a ^ p - b !)
-- (g₃ : b ! ≀ a ^ p)
(gβ‚„ : a ^ p - b ! = p) :
False := by
have hβ‚„: p^2 ∣ p := by
rw [gβ‚„] at h₃
exact h₃
have gp: 0 < p := by exact Prime.pos hp
have hβ‚…: p^2 ≀ p := by exact Nat.le_of_dvd gp hβ‚„
have g₆: 1 < p := by exact Prime.one_lt hp
have h₆: p^1 < p^2 := by exact Nat.pow_lt_pow_succ g₆
linarith
lemma imo_2022_p5_15_20
(a b p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
-- (hp : Nat.Prime p)
-- (h₁ : a ^ p = b ! + p)
-- (hbp : p ≀ b)
-- (hβ‚‚ : p ∣ a)
-- (hb2p : 2 * p ≀ b)
(h₃ : p ^ 2 ∣ a ^ p - b !)
(g₃ : b ! ≀ a ^ p)
(gβ‚„ : a ^ p - b ! = p) :
p ^ 2 ∣ p := by
rw [gβ‚„] at h₃
exact h₃
lemma imo_2022_p5_15_21
-- (a b : β„•)
(p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
(hp : Nat.Prime p)
-- (h₁ : a ^ p = b ! + p)
-- (hbp : p ≀ b)
-- (hβ‚‚ : p ∣ a)
-- (hb2p : 2 * p ≀ b)
-- (h₃ : p ^ 2 ∣ a ^ p - b !)
-- (g₃ : b ! ≀ a ^ p)
-- (gβ‚„ : a ^ p - b ! = p)
(hβ‚„ : p ^ 2 ∣ p) :
False := by
have gp: 0 < p := by exact Prime.pos hp
have hβ‚…: p^2 ≀ p := by exact Nat.le_of_dvd gp hβ‚„
have g₆: 1 < p := by exact Prime.one_lt hp
have h₆: p^1 < p^2 := by exact Nat.pow_lt_pow_succ g₆
linarith
lemma imo_2022_p5_15_22
(a b p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
(hp : Nat.Prime p)
-- (h₁ : a ^ p = b ! + p)
-- (hbp : p ≀ b)
-- (hβ‚‚ : p ∣ a)
-- (hb2p : 2 * p ≀ b)
(h₃ : p ^ 2 ∣ a ^ p - b !)
-- (g₃ : b ! ≀ a ^ p)
(gβ‚„ : a ^ p - b ! = p) :
p ^ 2 ≀ p := by
have gp: 0 < p := by exact Prime.pos hp
have hβ‚„: p^2 ∣ p := by
rw [gβ‚„] at h₃
exact h₃
exact Nat.le_of_dvd gp hβ‚„
lemma imo_2022_p5_15_23
-- (a b : β„•)
(p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
(hp : Nat.Prime p)
-- (h₁ : a ^ p = b ! + p)
-- (hbp : p ≀ b)
-- (hβ‚‚ : p ∣ a)
-- (hb2p : 2 * p ≀ b)
-- (h₃ : p ^ 2 ∣ a ^ p - b !)
-- (g₃ : b ! ≀ a ^ p)
-- (gβ‚„ : a ^ p - b ! = p)
-- (hβ‚„ : p ^ 2 ∣ p)
-- (gp : 0 < p)
(hβ‚… : p ^ 2 ≀ p) :
False := by
have g₆: 1 < p := by exact Prime.one_lt hp
have h₆: p^1 < p^2 := by exact Nat.pow_lt_pow_succ g₆
linarith
lemma imo_2022_p5_15_24
-- (a b : β„•)
(p : β„•)
-- (hβ‚€ : 0 < a ∧ 0 < b)
(hp : Nat.Prime p) :
-- (h₁ : a ^ p = b ! + p)
-- (hbp : p ≀ b)
-- (hβ‚‚ : p ∣ a)
-- (hb2p : 2 * p ≀ b)
-- (h₃ : p ^ 2 ∣ a ^ p - b !)
-- (g₃ : b ! ≀ a ^ p)
-- (gβ‚„ : a ^ p - b ! = p)
-- (hβ‚„ : p ^ 2 ∣ p)
-- (hβ‚… : p ^ 2 ≀ p) :
p ^ 1 < p ^ 2 := by
refine Nat.pow_lt_pow_succ ?_
exact Prime.one_lt hp