import os import csv import datasets class NepaliASRConfig(datasets.BuilderConfig): def __init__(self, **kwargs): super().__init__(**kwargs) class NepaliASR(datasets.GeneratorBasedBuilder): BUILDER_CONFIGS = [ NepaliASRConfig(version=datasets.Version("1.0.0"), description="validation_nepali_asr"), ] def _info(self): return datasets.DatasetInfo( features=datasets.Features( { "utterance_id": datasets.Value("string"), "speaker_id": datasets.Value("string"), "audio": datasets.Audio(sampling_rate=16000), "transcription": datasets.Value("string"), "num_frames": datasets.Value("int32"), } ), supervised_keys=None, homepage="", license="", citation="", ) def _split_generators(self, dl_manager): return [ datasets.SplitGenerator( name=datasets.Split.VALIDATION, gen_kwargs={ "transcriptions_path": os.path.join("validation_dataset", "validation_transcriptions.tsv"), "data_dir": "validation_dataset", }, ), ] def _generate_examples(self, transcriptions_path, data_dir): with open(transcriptions_path, encoding="utf-8") as f: reader = csv.DictReader(f, delimiter="\t") for idx, row in enumerate(reader): # Join data_dir with utterance_path for the audio file audio_path = os.path.join(data_dir, row["utterance_path"]) yield idx, { "utterance_id": row["utterance_id"], "speaker_id": row["speaker_id"], "audio": audio_path, "transcription": row["transcription"], "num_frames": int(row["num_frames"]), }