|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Introduction to the Biobert NER Shared Task: Named Entity Recognition""" |
|
import datasets |
|
import json |
|
|
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
_DESCRIPTION = """\ |
|
Este es un dataset biomédico Biobert para el español con 29 etiquetas""" |
|
|
|
_URL="data56/" |
|
_TRAINING_FILE = "train.json" |
|
_DEV_FILE = "valid.json" |
|
_TEST_FILE = "test.json" |
|
|
|
|
|
class Biobert_json_Config(datasets.BuilderConfig): |
|
|
|
|
|
def __init__(self, **kwargs): |
|
super(Biobert_json_Config, self).__init__(**kwargs) |
|
|
|
|
|
class Conll2003(datasets.GeneratorBasedBuilder): |
|
"""Conll2003 dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
Biobert_json_Config(name="Biobert_json", version=datasets.Version("1.0.0"), description="Biobert_json dataset"), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
|
|
"sentencia": datasets.Sequence(datasets.Value("string")), |
|
"tag": datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=[ |
|
"B_CANCER_CONCEPT", |
|
"B_CHEMOTHERAPY", |
|
"B_DATE", |
|
"B_DRUG", |
|
"B_FAMILY", |
|
"B_FREQ", |
|
"B_IMPLICIT_DATE", |
|
"B_INTERVAL", |
|
"B_METRIC", |
|
"B_OCURRENCE_EVENT", |
|
"B_QUANTITY", |
|
"B_RADIOTHERAPY", |
|
"B_SMOKER_STATUS", |
|
"B_STAGE", |
|
"B_SURGERY", |
|
"B_TNM", |
|
"I_CANCER_CONCEPT", |
|
"I_DATE", |
|
"I_DRUG", |
|
"I_FAMILY", |
|
"I_FREQ", |
|
"I_IMPLICIT_DATE", |
|
"I_INTERVAL", |
|
"I_METRIC", |
|
"I_OCURRENCE_EVENT", |
|
"I_SMOKER_STATUS", |
|
"I_STAGE", |
|
"I_SURGERY", |
|
"I_TNM", |
|
"O", |
|
|
|
] |
|
) |
|
), |
|
} |
|
), |
|
supervised_keys=None, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
urls_to_download = { |
|
"train": f"{_URL}{_TRAINING_FILE}", |
|
"val": f"{_URL}{_DEV_FILE}", |
|
"test": f"{_URL}{_TEST_FILE}", |
|
} |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["val"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
logger.info("⏳ Generating examples from = %s", filepath) |
|
with open(filepath, encoding="utf-8") as f: |
|
guid = 0 |
|
for line in f: |
|
record = json.loads(line) |
|
yield guid, record |
|
guid += 1 |
|
|
|
|