| from typing import Dict, Union | |
| import torch | |
| import torch.nn as nn | |
| from ...util import append_dims, instantiate_from_config | |
| from .denoiser_scaling import DenoiserScaling | |
| from .discretizer import Discretization | |
| class Denoiser(nn.Module): | |
| def __init__(self, scaling_config: Dict): | |
| super().__init__() | |
| self.scaling: DenoiserScaling = instantiate_from_config(scaling_config) | |
| def possibly_quantize_sigma(self, sigma: torch.Tensor) -> torch.Tensor: | |
| return sigma | |
| def possibly_quantize_c_noise(self, c_noise: torch.Tensor) -> torch.Tensor: | |
| return c_noise | |
| def forward( | |
| self, | |
| network: nn.Module, | |
| input: torch.Tensor, | |
| sigma: torch.Tensor, | |
| cond: Dict, | |
| **additional_model_inputs, | |
| ) -> torch.Tensor: | |
| sigma = self.possibly_quantize_sigma(sigma) | |
| sigma_shape = sigma.shape | |
| sigma = append_dims(sigma, input.ndim) | |
| c_skip, c_out, c_in, c_noise = self.scaling(sigma) | |
| c_noise = self.possibly_quantize_c_noise(c_noise.reshape(sigma_shape)) | |
| return ( | |
| network(input * c_in, c_noise, cond, **additional_model_inputs) * c_out | |
| + input * c_skip | |
| ) | |
| class DiscreteDenoiser(Denoiser): | |
| def __init__( | |
| self, | |
| scaling_config: Dict, | |
| num_idx: int, | |
| discretization_config: Dict, | |
| do_append_zero: bool = False, | |
| quantize_c_noise: bool = True, | |
| flip: bool = True, | |
| ): | |
| super().__init__(scaling_config) | |
| self.discretization: Discretization = instantiate_from_config( | |
| discretization_config | |
| ) | |
| sigmas = self.discretization(num_idx, do_append_zero=do_append_zero, flip=flip) | |
| self.register_buffer("sigmas", sigmas) | |
| self.quantize_c_noise = quantize_c_noise | |
| self.num_idx = num_idx | |
| def sigma_to_idx(self, sigma: torch.Tensor) -> torch.Tensor: | |
| dists = sigma - self.sigmas[:, None] | |
| return dists.abs().argmin(dim=0).view(sigma.shape) | |
| def idx_to_sigma(self, idx: Union[torch.Tensor, int]) -> torch.Tensor: | |
| return self.sigmas[idx] | |
| def possibly_quantize_sigma(self, sigma: torch.Tensor) -> torch.Tensor: | |
| return self.idx_to_sigma(self.sigma_to_idx(sigma)) | |
| def possibly_quantize_c_noise(self, c_noise: torch.Tensor) -> torch.Tensor: | |
| if self.quantize_c_noise: | |
| return self.sigma_to_idx(c_noise) | |
| else: | |
| return c_noise | |