--- dataset_info: - config_name: full_flat features: - name: boundary.n_field_periods dtype: float64 - name: boundary.is_stellarator_symmetric dtype: bool - name: boundary.r_cos(0, 0) dtype: float64 - name: boundary.r_cos(0, 1) dtype: float64 - name: boundary.r_cos(0, 2) dtype: float64 - name: boundary.r_cos(0, 3) dtype: float64 - name: boundary.r_cos(0, 4) dtype: float64 - name: boundary.r_cos(1, -4) dtype: float64 - name: boundary.r_cos(1, -3) dtype: float64 - name: boundary.r_cos(1, -2) dtype: float64 - name: boundary.r_cos(1, -1) dtype: float64 - name: boundary.r_cos(1, 0) dtype: float64 - name: boundary.r_cos(1, 1) dtype: float64 - name: boundary.r_cos(1, 2) dtype: float64 - name: boundary.r_cos(1, 3) dtype: float64 - name: boundary.r_cos(1, 4) dtype: float64 - name: boundary.r_cos(2, -4) dtype: float64 - name: boundary.r_cos(2, -3) dtype: float64 - name: boundary.r_cos(2, -2) dtype: float64 - name: boundary.r_cos(2, -1) dtype: float64 - name: boundary.r_cos(2, 0) dtype: float64 - name: boundary.r_cos(2, 1) dtype: float64 - name: boundary.r_cos(2, 2) dtype: float64 - name: boundary.r_cos(2, 3) dtype: float64 - name: boundary.r_cos(2, 4) dtype: float64 - name: boundary.r_cos(3, -4) dtype: float64 - name: boundary.r_cos(3, -3) dtype: float64 - name: boundary.r_cos(3, -2) dtype: float64 - name: boundary.r_cos(3, -1) dtype: float64 - name: boundary.r_cos(3, 0) dtype: float64 - name: boundary.r_cos(3, 1) dtype: float64 - name: boundary.r_cos(3, 2) dtype: float64 - name: boundary.r_cos(3, 3) dtype: float64 - name: boundary.r_cos(3, 4) dtype: float64 - name: boundary.r_cos(4, -4) dtype: float64 - name: boundary.r_cos(4, -3) dtype: float64 - name: boundary.r_cos(4, -2) dtype: float64 - name: boundary.r_cos(4, -1) dtype: float64 - name: boundary.r_cos(4, 0) dtype: float64 - name: boundary.r_cos(4, 1) dtype: float64 - name: boundary.r_cos(4, 2) dtype: float64 - name: boundary.r_cos(4, 3) dtype: float64 - name: boundary.r_cos(4, 4) dtype: float64 - name: boundary.z_sin(0, 1) dtype: float64 - name: boundary.z_sin(0, 2) dtype: float64 - name: boundary.z_sin(0, 3) dtype: float64 - name: boundary.z_sin(0, 4) dtype: float64 - name: boundary.z_sin(1, -4) dtype: float64 - name: boundary.z_sin(1, -3) dtype: float64 - name: boundary.z_sin(1, -2) dtype: float64 - name: boundary.z_sin(1, -1) dtype: float64 - name: boundary.z_sin(1, 0) dtype: float64 - name: boundary.z_sin(1, 1) dtype: float64 - name: boundary.z_sin(1, 2) dtype: float64 - name: boundary.z_sin(1, 3) dtype: float64 - name: boundary.z_sin(1, 4) dtype: float64 - name: boundary.z_sin(2, -4) dtype: float64 - name: boundary.z_sin(2, -3) dtype: float64 - name: boundary.z_sin(2, -2) dtype: float64 - name: boundary.z_sin(2, -1) dtype: float64 - name: boundary.z_sin(2, 0) dtype: float64 - name: boundary.z_sin(2, 1) dtype: float64 - name: boundary.z_sin(2, 2) dtype: float64 - name: boundary.z_sin(2, 3) dtype: float64 - name: boundary.z_sin(2, 4) dtype: float64 - name: boundary.z_sin(3, -4) dtype: float64 - name: boundary.z_sin(3, -3) dtype: float64 - name: boundary.z_sin(3, -2) dtype: float64 - name: boundary.z_sin(3, -1) dtype: float64 - name: boundary.z_sin(3, 0) dtype: float64 - name: boundary.z_sin(3, 1) dtype: float64 - name: boundary.z_sin(3, 2) dtype: float64 - name: boundary.z_sin(3, 3) dtype: float64 - name: boundary.z_sin(3, 4) dtype: float64 - name: boundary.z_sin(4, -4) dtype: float64 - name: boundary.z_sin(4, -3) dtype: float64 - name: boundary.z_sin(4, -2) dtype: float64 - name: boundary.z_sin(4, -1) dtype: float64 - name: boundary.z_sin(4, 0) dtype: float64 - name: boundary.z_sin(4, 1) dtype: float64 - name: boundary.z_sin(4, 2) dtype: float64 - name: boundary.z_sin(4, 3) dtype: float64 - name: boundary.z_sin(4, 4) dtype: float64 - name: metrics.qi dtype: float64 - name: metrics.vacuum_well dtype: float64 - name: metrics.aspect_ratio dtype: float64 - name: metrics.max_elongation dtype: float64 - name: metrics.average_triangularity dtype: float64 - name: metrics.axis_magnetic_mirror_ratio dtype: float64 - name: metrics.edge_magnetic_mirror_ratio dtype: float64 - name: metrics.aspect_ratio_over_edge_rotational_transform dtype: float64 - name: metrics.flux_compression_in_regions_of_bad_curvature dtype: float64 - name: metrics.axis_rotational_transform_over_n_field_periods dtype: float64 - name: metrics.edge_rotational_transform_over_n_field_periods dtype: float64 - name: metrics.minimum_normalized_magnetic_gradient_scale_length dtype: float64 - name: metrics.id dtype: string - name: omnigenous_field_and_targets.aspect_ratio dtype: float64 - name: omnigenous_field_and_targets.major_radius dtype: float64 - name: omnigenous_field_and_targets.max_elongation dtype: float64 - name: omnigenous_field_and_targets.rotational_transform dtype: float64 - name: omnigenous_field_and_targets.id dtype: string - name: omnigenous_field_and_targets.omnigenous_field.x_lmn sequence: sequence: sequence: float64 - name: omnigenous_field_and_targets.omnigenous_field.n_field_periods dtype: int64 - name: omnigenous_field_and_targets.omnigenous_field.poloidal_winding dtype: int64 - name: omnigenous_field_and_targets.omnigenous_field.torodial_winding dtype: int64 - name: omnigenous_field_and_targets.omnigenous_field.modB_spline_knot_coefficients sequence: sequence: float64 - name: desc_omnigenous_field_optimization_settings.id dtype: string - name: desc_omnigenous_field_optimization_settings.objective_settings.elongation_settings.name dtype: string - name: desc_omnigenous_field_optimization_settings.objective_settings.elongation_settings.weight dtype: float64 - name: desc_omnigenous_field_optimization_settings.objective_settings.elongation_settings.target_kind dtype: string - name: desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.name dtype: string - name: desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.weight dtype: float64 - name: desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.eta_weight dtype: float64 - name: desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.eq_lcfs_grid_rho dtype: float64 - name: desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.eq_lcfs_grid_M_factor dtype: float64 - name: desc_omnigenous_field_optimization_settings.objective_settings.omnigenity_settings.eq_lcfs_grid_N_factor dtype: float64 - name: desc_omnigenous_field_optimization_settings.objective_settings.aspect_ratio_settings.name dtype: string - name: desc_omnigenous_field_optimization_settings.objective_settings.aspect_ratio_settings.weight dtype: float64 - name: desc_omnigenous_field_optimization_settings.objective_settings.aspect_ratio_settings.target_kind dtype: string - name: desc_omnigenous_field_optimization_settings.objective_settings.rotational_transform_settings.name dtype: string - name: desc_omnigenous_field_optimization_settings.objective_settings.rotational_transform_settings.weight dtype: float64 - name: desc_omnigenous_field_optimization_settings.objective_settings.rotational_transform_settings.target_kind dtype: string - name: desc_omnigenous_field_optimization_settings.optimizer_settings.name dtype: string - name: desc_omnigenous_field_optimization_settings.optimizer_settings.maxiter dtype: float64 - name: desc_omnigenous_field_optimization_settings.optimizer_settings.verbose dtype: float64 - name: desc_omnigenous_field_optimization_settings.equilibrium_settings.psi dtype: float64 - name: desc_omnigenous_field_optimization_settings.equilibrium_settings.check_orientation dtype: bool - name: desc_omnigenous_field_optimization_settings.equilibrium_settings.max_poloidal_mode dtype: float64 - name: desc_omnigenous_field_optimization_settings.equilibrium_settings.max_toroidal_mode dtype: float64 - name: desc_omnigenous_field_optimization_settings.initial_guess_settings.torsion dtype: float64 - name: desc_omnigenous_field_optimization_settings.initial_guess_settings.elongation dtype: float64 - name: desc_omnigenous_field_optimization_settings.initial_guess_settings.aspect_ratio dtype: float64 - name: desc_omnigenous_field_optimization_settings.initial_guess_settings.major_radius dtype: float64 - name: desc_omnigenous_field_optimization_settings.initial_guess_settings.mirror_ratio dtype: float64 - name: desc_omnigenous_field_optimization_settings.initial_guess_settings.n_field_periods dtype: float64 - name: desc_omnigenous_field_optimization_settings.initial_guess_settings.is_iota_positive dtype: bool - name: desc_omnigenous_field_optimization_settings.initial_guess_settings.is_stellarator_symmetric dtype: bool - name: desc_omnigenous_field_optimization_settings.initial_guess_settings.max_elongation dtype: float64 - name: desc_omnigenous_field_optimization_settings.initial_guess_settings.max_poloidal_mode dtype: float64 - name: desc_omnigenous_field_optimization_settings.initial_guess_settings.max_toroidal_mode dtype: float64 - name: desc_omnigenous_field_optimization_settings.initial_guess_settings.rotational_transform dtype: float64 - name: vmec_omnigenous_field_optimization_settings.verbose dtype: bool - name: vmec_omnigenous_field_optimization_settings.max_poloidal_mode dtype: float64 - name: vmec_omnigenous_field_optimization_settings.max_toroidal_mode dtype: float64 - name: vmec_omnigenous_field_optimization_settings.n_inner_optimizations dtype: float64 - name: vmec_omnigenous_field_optimization_settings.gradient_free_max_time dtype: float64 - name: vmec_omnigenous_field_optimization_settings.infinity_norm_spectrum_scaling dtype: float64 - name: vmec_omnigenous_field_optimization_settings.gradient_free_budget_per_design_variable dtype: float64 - name: vmec_omnigenous_field_optimization_settings.use_continuation_method_in_fourier_space dtype: bool - name: vmec_omnigenous_field_optimization_settings.gradient_free_optimization_hypercube_bounds dtype: float64 - name: vmec_omnigenous_field_optimization_settings.gradient_based_relative_objectives_tolerance dtype: float64 - name: vmec_omnigenous_field_optimization_settings.id dtype: string - name: qp_init_omnigenous_field_optimization_settings.torsion dtype: float64 - name: qp_init_omnigenous_field_optimization_settings.elongation dtype: float64 - name: qp_init_omnigenous_field_optimization_settings.aspect_ratio dtype: float64 - name: qp_init_omnigenous_field_optimization_settings.major_radius dtype: float64 - name: qp_init_omnigenous_field_optimization_settings.mirror_ratio dtype: float64 - name: qp_init_omnigenous_field_optimization_settings.n_field_periods dtype: float64 - name: qp_init_omnigenous_field_optimization_settings.is_iota_positive dtype: bool - name: qp_init_omnigenous_field_optimization_settings.is_stellarator_symmetric dtype: bool - name: qp_init_omnigenous_field_optimization_settings.id dtype: string - name: nae_init_omnigenous_field_optimization_settings.aspect_ratio dtype: float64 - name: nae_init_omnigenous_field_optimization_settings.mirror_ratio dtype: float64 - name: nae_init_omnigenous_field_optimization_settings.max_elongation dtype: float64 - name: nae_init_omnigenous_field_optimization_settings.n_field_periods dtype: float64 - name: nae_init_omnigenous_field_optimization_settings.max_poloidal_mode dtype: float64 - name: nae_init_omnigenous_field_optimization_settings.max_toroidal_mode dtype: float64 - name: nae_init_omnigenous_field_optimization_settings.rotational_transform dtype: float64 - name: nae_init_omnigenous_field_optimization_settings.id dtype: string - name: misc.vmecpp_wout_id dtype: string - name: misc.has_optimize_boundary_omnigenity_vmec_error dtype: bool - name: misc.has_optimize_boundary_omnigenity_desc_error dtype: bool - name: misc.has_generate_qp_initialization_from_targets_error dtype: bool - name: misc.has_generate_nae_initialization_from_targets_error dtype: bool - name: misc.has_neurips_2025_forward_model_error dtype: bool - name: plasma_config_id dtype: string splits: - name: train num_bytes: 431253433 num_examples: 182222 download_size: 239021787 dataset_size: 431253433 - config_name: full_json features: - name: boundary.n_field_periods dtype: float64 - name: boundary.is_stellarator_symmetric dtype: bool - name: boundary.surface dtype: string - name: metrics.id dtype: string - name: metrics.metrics dtype: string - name: omnigenous_field_and_targets.id dtype: string - name: omnigenous_field_and_targets.omnigious_field_and_targets dtype: string - name: desc_omnigenous_field_optimization_settings.id dtype: string - name: desc_omnigenous_field_optimization_settings.desc_omnigenous_field_optimization_settings dtype: string - name: vmec_omnigenous_field_optimization_settings.id dtype: string - name: vmec_omnigenous_field_optimization_settings.vmec_omnigenous_field_optimization_settings dtype: string - name: qp_init_omnigenous_field_optimization_settings.id dtype: string - name: qp_init_omnigenous_field_optimization_settings.qp_init_omnigenous_field_optimization_settings dtype: string - name: nae_init_omnigenous_field_optimization_settings.id dtype: string - name: nae_init_omnigenous_field_optimization_settings.nae_init_omnigenous_field_optimization_settings dtype: string - name: misc.vmecpp_wout_id dtype: string - name: misc.has_optimize_boundary_omnigenity_vmec_error dtype: bool - name: misc.has_optimize_boundary_omnigenity_desc_error dtype: bool - name: misc.has_generate_qp_initialization_from_targets_error dtype: bool - name: misc.has_generate_nae_initialization_from_targets_error dtype: bool - name: misc.has_neurips_2025_forward_model_error dtype: bool - name: plasma_config_id dtype: string splits: - name: train num_bytes: 798346097 num_examples: 182222 download_size: 385377661 dataset_size: 798346097 - config_name: vmecpp_ideal_mhd_equilibria features: - name: plasma_config_id dtype: string - name: vmecpp_wout_id dtype: string - name: vmecpp_wout_json dtype: string - name: __index_level_0__ dtype: int64 splits: - name: train num_bytes: 1373486837 num_examples: 324 download_size: 956063943 dataset_size: 1373486837 configs: - config_name: full_flat data_files: - split: train path: full_flat/train-* - config_name: full_json data_files: - split: train path: full_json/train-* - config_name: vmecpp_ideal_mhd_equilibria data_files: - split: train path: vmecpp_ideal_mhd_equilibria/part-* license: mit language: - en tags: - physics - fusion - optimization - neurips pretty_name: ConStellaration size_categories: - 10K A dataset of diverse quasi-isodynamic (QI) stellarator boundary shapes with corresponding performance metrics and ideal magneto-hydrodynamic (MHD) equilibria, as well as settings for their generation. ## Dataset Details ### Dataset Description Stellarators are magnetic confinement devices that are being pursued to deliver steady-state carbon-free fusion energy. Their design involves a high-dimensional, constrained optimization problem that requires expensive physics simulations and significant domain expertise. Specifically, QI-stellarators are seen as a promising path to commercial fusion due to their intrinsic avoidance of current-driven disruptions. With the release of this dataset, we aim to lower the barrier for optimization and machine learning researchers to contribute to stellarator design, and to accelerate cross-disciplinary progress toward bringing fusion energy to the grid. - **Curated by:** Proxima Fusion - **License:** MIT ![Diagram of the computation of metrics of interest from a plasma boundary via the MHD equilibrium](mhd_intro_v2.png) ### Dataset Sources - **Repository:** https://huggingface.co/datasets/proxima-fusion/constellaration - **Paper:** [not published yet] - **Code:** https://github.com/proximafusion/constellaration ## Dataset Structure The dataset consists of 2 tabular parts. Both parts have a column `plasma_config_id` in common which can be used to associate respective entries:
full_json/full_flat vmecpp_ideal_mhd_equilibria
Contains information about:
  • Plasma boundaries
  • Ideal MHD metrics
  • Omnigenous field and targets, used as input for sampling of plasma boundaries
  • Sampling settings for various methods (DESC, VMEC, QP initialization, Near-axis expansion)
  • Miscellaneous information about errors that might have occurred during sampling or metrics computation.
Contains, for each plasma boundary, a JSON representations of the "WOut" file as obtained when running VMEC, initialized on the boundary.
The JSON representation can be converted to a VMEC2000 output file.
The `full_json` variant of the dataset contains for each of the components listed about an identifier column (ending with `.id`), as well as a JSON column. The `full_flat` variant contains the same information as `full_json` but with all JSON columns flattened into one column per leaf in the nested JSON structure (with `.` separating the keys on the JSON path to the respective leaf). ## Uses ### Basic Usage Load the dataset and convert to a Pandas Dataframe: ```python import datasets import torch from torch.utils.data import DataLoader ds = datasets.load_dataset("proxima-fusion/constellaration", "full_flat")["train"] ds = ds.select_columns([c for c in ds.column_names if c.startswith("boundary.") or c.startswith("metrics.")]) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") ds_torch = ds.with_format("torch", device=device) # other options: "jax", "tensorflow" etc. dataloader = DataLoader(ds_torch, batch_size=4) for batch in dataloader: print(batch) break ```
Output ```python {'boundary.is_stellarator_symmetric': tensor([True, True, True, True]), 'boundary.n_field_periods': tensor([5., 2., 5., 3.]), 'boundary.r_cos(0, 0)': tensor([0.9995, 0.9933, 1.0000, 1.0000]), 'boundary.r_cos(0, 1)': tensor([ 0.0008, 0.0957, 0.0978, -0.0658]), 'boundary.r_cos(0, 2)': tensor([-0.0166, -0.0522, -0.0358, -0.0385]), 'boundary.r_cos(0, 3)': tensor([ 0.0006, -0.0098, 0.0004, 0.0022]), 'boundary.r_cos(0, 4)': tensor([ 2.7140e-06, -5.2107e-04, 4.1021e-04, 4.6007e-04]), 'boundary.r_cos(1, -1)': tensor([-0.0774, -0.0480, 0.0674, 0.0142]), 'boundary.r_cos(1, -2)': tensor([-0.0254, 0.0015, 0.0327, 0.0565]), 'boundary.r_cos(1, -3)': tensor([-0.0036, -0.0002, 0.0047, -0.0110]), 'boundary.r_cos(1, -4)': tensor([ 0.0009, -0.0007, 0.0019, -0.0007]), 'boundary.r_cos(1, 0)': tensor([0.2136, 0.1506, 0.0668, 0.0835]), 'boundary.r_cos(1, 1)': tensor([-0.0430, -0.0009, -0.0421, -0.0468]), 'boundary.r_cos(1, 2)': tensor([ 0.0070, 0.0099, 0.0148, -0.0137]), 'boundary.r_cos(1, 3)': tensor([-0.0019, 0.0014, -0.0013, 0.0040]), 'boundary.r_cos(1, 4)': tensor([-0.0001, -0.0001, -0.0001, 0.0001]), 'boundary.r_cos(2, -1)': tensor([ 0.0222, -0.0189, -0.0043, -0.0197]), 'boundary.r_cos(2, -2)': tensor([ 0.0252, -0.0124, -0.0106, 0.0008]), 'boundary.r_cos(2, -3)': tensor([ 0.0063, -0.0054, -0.0039, 0.0047]), 'boundary.r_cos(2, -4)': tensor([ 0.0011, 0.0021, -0.0010, -0.0004]), 'boundary.r_cos(2, 0)': tensor([-0.0170, -0.0226, -0.0083, -0.0095]), 'boundary.r_cos(2, 1)': tensor([-1.9742e-03, 2.4878e-03, -6.7278e-05, -5.8859e-03]), 'boundary.r_cos(2, 2)': tensor([0.0030, 0.0017, 0.0003, 0.0010]), 'boundary.r_cos(2, 3)': tensor([-0.0009, 0.0002, -0.0010, 0.0009]), 'boundary.r_cos(2, 4)': tensor([ 0.0002, 0.0002, 0.0002, -0.0002]), 'boundary.r_cos(3, -1)': tensor([-0.0052, -0.0055, 0.0013, -0.0080]), 'boundary.r_cos(3, -2)': tensor([-0.0019, -0.0035, 0.0026, -0.0004]), 'boundary.r_cos(3, -3)': tensor([-0.0030, 0.0013, 0.0007, 0.0002]), 'boundary.r_cos(3, -4)': tensor([-0.0011, 0.0003, 0.0003, 0.0029]), 'boundary.r_cos(3, 0)': tensor([-0.0057, -0.0003, -0.0014, 0.0013]), 'boundary.r_cos(3, 1)': tensor([ 0.0021, 0.0029, 0.0010, -0.0005]), 'boundary.r_cos(3, 2)': tensor([-0.0001, 0.0011, -0.0008, -0.0007]), 'boundary.r_cos(3, 3)': tensor([1.6793e-04, 3.4548e-04, 4.4246e-04, 3.4558e-05]), 'boundary.r_cos(3, 4)': tensor([-4.5783e-05, 1.1368e-04, -1.1460e-04, 1.4845e-04]), 'boundary.r_cos(4, -1)': tensor([ 7.2199e-05, 1.2212e-04, 5.9814e-05, -5.6161e-04]), 'boundary.r_cos(4, -2)': tensor([ 0.0004, 0.0004, -0.0001, -0.0003]), 'boundary.r_cos(4, -3)': tensor([-0.0002, -0.0002, -0.0001, -0.0005]), 'boundary.r_cos(4, -4)': tensor([ 2.3317e-04, 7.7059e-05, 3.5259e-05, -1.2475e-04]), 'boundary.r_cos(4, 0)': tensor([ 1.3698e-04, -2.1361e-04, -5.7761e-04, 8.3187e-05]), 'boundary.r_cos(4, 1)': tensor([-7.0448e-05, -5.2118e-04, 3.7886e-04, -1.2714e-04]), 'boundary.r_cos(4, 2)': tensor([ 0.0003, -0.0002, -0.0002, -0.0002]), 'boundary.r_cos(4, 3)': tensor([-9.0838e-05, -1.6513e-04, 6.7852e-05, 4.1940e-06]), 'boundary.r_cos(4, 4)': tensor([-6.2693e-06, 1.4236e-06, -3.0395e-05, -4.5643e-05]), 'boundary.z_sin(0, 1)': tensor([-0.1963, -0.4660, 0.0626, -0.0143]), 'boundary.z_sin(0, 2)': tensor([ 0.0197, -0.0487, 0.0186, 0.0149]), 'boundary.z_sin(0, 3)': tensor([-0.0022, -0.0056, 0.0017, -0.0066]), 'boundary.z_sin(0, 4)': tensor([ 6.1945e-04, -2.5693e-03, 3.3028e-05, -3.0652e-04]), 'boundary.z_sin(1, -1)': tensor([-0.0737, -0.0783, 0.0069, -0.0228]), 'boundary.z_sin(1, -2)': tensor([-0.0346, 0.0154, 0.0488, 0.0576]), 'boundary.z_sin(1, -3)': tensor([-0.0038, -0.0004, 0.0128, -0.0016]), 'boundary.z_sin(1, -4)': tensor([-5.1524e-04, -2.2537e-03, 1.7765e-03, 9.6958e-05]), 'boundary.z_sin(1, 0)': tensor([-0.0947, -0.1091, -0.1901, -0.1610]), 'boundary.z_sin(1, 1)': tensor([0.0144, 0.0656, 0.0731, 0.0166]), 'boundary.z_sin(1, 2)': tensor([-0.0049, 0.0008, -0.0216, 0.0150]), 'boundary.z_sin(1, 3)': tensor([ 0.0011, -0.0014, 0.0032, -0.0012]), 'boundary.z_sin(1, 4)': tensor([ 0.0002, 0.0015, -0.0005, -0.0004]), 'boundary.z_sin(2, -1)': tensor([-0.0140, 0.0100, 0.0049, -0.0189]), 'boundary.z_sin(2, -2)': tensor([ 0.0140, 0.0016, -0.0162, -0.0114]), 'boundary.z_sin(2, -3)': tensor([ 0.0048, -0.0015, -0.0107, 0.0036]), 'boundary.z_sin(2, -4)': tensor([ 0.0009, 0.0024, -0.0018, -0.0010]), 'boundary.z_sin(2, 0)': tensor([ 0.0142, -0.0110, 0.0052, -0.0008]), 'boundary.z_sin(2, 1)': tensor([ 0.0004, -0.0072, -0.0033, 0.0095]), 'boundary.z_sin(2, 2)': tensor([-0.0008, -0.0030, 0.0036, -0.0005]), 'boundary.z_sin(2, 3)': tensor([-2.4587e-04, -1.4641e-03, -6.1073e-05, -5.5180e-04]), 'boundary.z_sin(2, 4)': tensor([-4.4745e-05, 1.1328e-04, -5.3629e-05, 3.2248e-04]), 'boundary.z_sin(3, -1)': tensor([ 0.0137, 0.0037, -0.0037, 0.0090]), 'boundary.z_sin(3, -2)': tensor([-0.0037, -0.0089, -0.0025, -0.0084]), 'boundary.z_sin(3, -3)': tensor([-0.0052, 0.0009, -0.0015, -0.0025]), 'boundary.z_sin(3, -4)': tensor([-0.0011, 0.0014, -0.0002, 0.0023]), 'boundary.z_sin(3, 0)': tensor([ 0.0012, -0.0005, -0.0001, -0.0020]), 'boundary.z_sin(3, 1)': tensor([-0.0007, 0.0040, 0.0003, -0.0016]), 'boundary.z_sin(3, 2)': tensor([-0.0006, -0.0003, 0.0005, 0.0008]), 'boundary.z_sin(3, 3)': tensor([ 0.0002, 0.0003, -0.0004, 0.0004]), 'boundary.z_sin(3, 4)': tensor([-5.6412e-05, 1.0018e-04, 5.2259e-05, -6.8400e-05]), 'boundary.z_sin(4, -1)': tensor([ 3.2419e-05, -4.5468e-04, 1.1803e-03, 5.0270e-04]), 'boundary.z_sin(4, -2)': tensor([ 3.0922e-04, -2.3282e-03, -6.1121e-05, 6.0890e-04]), 'boundary.z_sin(4, -3)': tensor([ 0.0006, 0.0007, -0.0003, -0.0002]), 'boundary.z_sin(4, -4)': tensor([ 1.5477e-04, 2.9187e-04, 9.7048e-05, -3.6228e-04]), 'boundary.z_sin(4, 0)': tensor([ 0.0002, 0.0010, -0.0004, -0.0007]), 'boundary.z_sin(4, 1)': tensor([-6.8060e-04, 6.0775e-04, 4.5423e-04, -7.6356e-05]), 'boundary.z_sin(4, 2)': tensor([ 0.0002, -0.0004, -0.0003, 0.0002]), 'boundary.z_sin(4, 3)': tensor([-5.1384e-05, 5.7630e-05, 9.2855e-05, -3.2524e-05]), 'boundary.z_sin(4, 4)': tensor([ 3.9863e-05, -1.2590e-04, -4.8167e-06, 5.3396e-05]), 'metrics.aspect_ratio': tensor([7.7955, 8.7009, 8.3073, 9.6474]), 'metrics.aspect_ratio_over_edge_rotational_transform': tensor([ 4.7622, 39.3853, 7.4686, 9.3211]), 'metrics.average_triangularity': tensor([ 0.6554, -0.6067, -0.3194, -0.5184]), 'metrics.axis_magnetic_mirror_ratio': tensor([0.2098, 0.2465, 0.5243, 0.2823]), 'metrics.axis_rotational_transform_over_n_field_periods': tensor([0.3285, 0.2195, 0.2377, 0.2333]), 'metrics.edge_magnetic_mirror_ratio': tensor([0.3518, 0.2744, 0.7742, 0.4869]), 'metrics.edge_rotational_transform_over_n_field_periods': tensor([0.3274, 0.1105, 0.2225, 0.3450]), 'metrics.flux_compression_in_regions_of_bad_curvature': tensor([2.0642, 1.6771, 1.6702, 1.4084]), 'metrics.id': ['DfpsEPzxXHTUgveVPNFVxyw', 'D6ydRp85utx9ZXqZVXbez8G', 'DLfSjAoEr26nCNet4S84XET', 'DBVNupAx3tW54uUz5bGQfyT'], 'metrics.max_elongation': tensor([7.9947, 5.7292, 5.6427, 6.7565]), 'metrics.minimum_normalized_magnetic_gradient_scale_length': tensor([5.0333, 4.4903, 2.7130, 5.9777]), 'metrics.qi': tensor([0.0101, 0.0007, 0.0249, 0.0148]), 'metrics.vacuum_well': tensor([-0.0216, -0.0756, -0.1321, -0.2297])} ```
### Advanced Usage For advanced manipulation and visualization of data contained in this dataset, install `constellaration` from [here](https://github.com/proximafusion/constellaration). Load and instantiate plasma boundaries: ```python import datasets from constellaration.geometry import surface_rz_fourier full_json_ds = datasets.load_dataset("proxima-fusion/constellaration", "full_json")["train"] full_json_df = full_json_ds.to_pandas().set_index("plasma_config_id") plasma_config_id = "DQ4abEQAQjFPGp9nPQN9Vjf" boundary_json = full_json_df.loc[plasma_config_id]["boundary.surface"] boundary = surface_rz_fourier.SurfaceRZFourier.model_validate_json(boundary_json) ``` Plot boundary: ```python from constellaration.utils import visualization visualization.plot_surface(boundary) visualization.plot_boundary(boundary) ``` Boundary | Cross-sections :-------------------------:|:-------------------------: ![Plot of plasma boundary](boundary.png) | ![Plot of boundary cross-sections](boundary_cross_sections.png) Stream and instantiate the VMEC ideal MHD equilibria: ```python import datasets from constellaration.mhd import vmec_utils ds = datasets.load_dataset("proxima-fusion/constellaration", "vmecpp_ideal_mhd_equilibria", streaming=True)["train"] ds = ds.filter(lambda row: row["vmecpp_wout_json"] is not None) row = next(ds.__iter__()) vmecpp_wout_json = row["vmecpp_wout_json"] vmecpp_wout = vmec_utils.VmecppWOut.model_validate_json(vmecpp_wout_json) # Fetch corresponding boundary plasma_config_id = row["plasma_config_id"] boundary_json = full_json_df.loc[plasma_config_id]["boundary.surface"] boundary = surface_rz_fourier.SurfaceRZFourier.model_validate_json(boundary_json) ``` Plot flux surfaces: ```python from constellaration.utils import visualization visualization.plot_flux_surfaces(vmecpp_wout, boundary) ``` ![Plot of flux surfaces](flux_surfaces.png) Save ideal MHD equilibrium to *VMEC2000 WOut* file: ```python import pathlib from constellaration.utils import file_exporter file_exporter.to_vmec2000_wout_file(vmecpp_wout, pathlib.Path("vmec2000_wout.nc")) ``` ## Dataset Creation ### Curation Rationale Wide-spread community progress is currently bottlenecked by the lack of standardized optimization problems with strong baselines and datasets that enable data-driven approaches, particularly for quasi-isodynamic (QI) stellarator configurations. ### Source Data #### Data Collection and Processing We generated this dataset by sampling diverse QI fields and optimizing stellarator plasma boundaries to target key properties, using four different methods. #### Who are the source data producers? Proxima Fusion's stellarator optimization team. #### Personal and Sensitive Information The dataset contains no personally identifiable information. ## Citation **BibTeX:** @article{article_id, author = {Santiago A Cadena, Andrea Merlo, Emanuel Laude, Alexander Bauer, Atul Agrawal, Maria Pascu, Marija Savtchouk, Lukas Bonauer, Enrico Guiraud, Stuart R. Hudson, Markus Kaiser}, title = {ConStellaration: A dataset of QI-like stellarator plasma boundaries and optimization benchmarks}, journal = {NeurIPS 2025 Datasets and Benchmarks Track}, year = {2025} } ## Glossary | Abbreviation | Expansion | | -------- | ------- | | QI | Quasi-Isodynamic(ity) | | MHD | Magneto-Hydrodynamic | | [DESC](https://desc-docs.readthedocs.io/en/stable/) | Dynamical Equilibrium Solver for Confinement | | VMEC/[VMEC++](https://github.com/proximafusion/vmecpp) | Variational Moments Equilibrium Code (Fortran/C++) | | QP | Quasi-Poloidal | | NAE | Near-Axis Expansion | | NFP | Number of Field Periods | ## Dataset Card Authors Alexander Bauer, Santiago A. Cadena ## Dataset Card Contact alexbauer@proximafusion.com