Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
json
Sub-tasks:
multi-class-classification
Languages:
Catalan
Size:
10K - 100K
License:
| # Loading script for the TeCla dataset. | |
| import json | |
| import datasets | |
| logger = datasets.logging.get_logger(__name__) | |
| _CITATION = """ | |
| """ | |
| _DESCRIPTION = """ | |
| Dataset automatically created from Catalan Wikipedia articles and the associated categories. | |
| """ | |
| _URL = "./" | |
| _TRAINING_FILE = "train.json" | |
| _DEV_FILE = "dev.json" | |
| class ca_wiki_tcConfig(datasets.BuilderConfig): | |
| """ Builder config for the CaWikiTC dataset """ | |
| def __init__(self, **kwargs): | |
| """BuilderConfig for CaWikiTC. | |
| Args: | |
| **kwargs: keyword arguments forwarded to super. | |
| """ | |
| super(ca_wiki_tcConfig, self).__init__(**kwargs) | |
| class ca_wiki_tc(datasets.GeneratorBasedBuilder): | |
| """ CaWikiTC Dataset """ | |
| BUILDER_CONFIGS = [ | |
| ca_wiki_tcConfig( | |
| name="ca-wiki-tc", | |
| version=datasets.Version("1.0.1"), | |
| description="CaWikiTC dataset", | |
| ), | |
| ] | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=datasets.Features( | |
| { | |
| "text": datasets.Value("string"), | |
| "label": datasets.features.ClassLabel | |
| (names= | |
| [ | |
| "Administració", | |
| "Aeronàutica", | |
| "Agricultura", | |
| "Antropologia", | |
| "Arqueologia", | |
| "Arquitectura", | |
| "Art", | |
| "Astronomia", | |
| "Astronàutica", | |
| "Biblioteconomia", | |
| "Biotecnologia", | |
| "Catàstrofes", | |
| "Circ", | |
| "Ciència militar", | |
| "Ciència-ficció", | |
| "Ciències ambientals", | |
| "Ciències de la salut", | |
| "Ciències polítiques", | |
| "Conflictes", | |
| "Cronometria", | |
| "Cultura popular", | |
| "Dansa", | |
| "Dret", | |
| "Ecologia", | |
| "Enginyeria", | |
| "Epidèmies", | |
| "Esoterisme", | |
| "Estris", | |
| "Festivals", | |
| "Filologia", | |
| "Filosofia", | |
| "Fiscalitat", | |
| "Física", | |
| "Geografia", | |
| "Geologia", | |
| "Gestió", | |
| "Heràldica", | |
| "Història", | |
| "Humor", | |
| "Indumentària", | |
| "Informàtica", | |
| "Jaciments paleontològics", | |
| "Jocs", | |
| "Lingüística", | |
| "Llengües", | |
| "Llocs ficticis", | |
| "Matemàtiques", | |
| "Metodologia", | |
| "Mitologia", | |
| "Multimèdia", | |
| "Museologia", | |
| "Nàutica", | |
| "Objectes astronòmics", | |
| "Pedagogia", | |
| "Periodisme", | |
| "Protestes", | |
| "Pseudociència", | |
| "Psicologia", | |
| "Química", | |
| "Robòtica", | |
| "Ràdio", | |
| "Seguretat laboral", | |
| "Sociologia", | |
| "Telecomunicacions", | |
| "Televisió", | |
| "Teologia", | |
| "Ètica", | |
| ] | |
| ), | |
| } | |
| ), | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| """Returns SplitGenerators.""" | |
| urls_to_download = { | |
| "train": f"{_URL}{_TRAINING_FILE}", | |
| "dev": f"{_URL}{_DEV_FILE}", | |
| } | |
| downloaded_files = dl_manager.download_and_extract(urls_to_download) | |
| return [ | |
| datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), | |
| datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}) | |
| ] | |
| def _generate_examples(self, filepath): | |
| """This function returns the examples in the raw (text) form.""" | |
| logger.info("generating examples from = %s", filepath) | |
| with open(filepath, encoding="utf-8") as f: | |
| data = json.load(f) | |
| for id_, article in enumerate(data): | |
| text = article["text"] | |
| label = article["label"] | |
| yield id_, { | |
| "text": text, | |
| "label": label, | |
| } | |