prithivMLmods commited on
Commit
f2dbc82
·
verified ·
1 Parent(s): 8f79d5f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +51 -3
README.md CHANGED
@@ -1,3 +1,51 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ task_categories:
4
+ - image-classification
5
+ language:
6
+ - en
7
+ tags:
8
+ - Watermark-or-Not
9
+ - Experimental
10
+ size_categories:
11
+ - 10K<n<100K
12
+ ---
13
+
14
+ # Watermark-or-Not-20K Dataset
15
+
16
+ ## Overview
17
+
18
+ The **Watermark-or-Not-20K** dataset consists of 20,000 images annotated with binary labels indicating the presence or absence of a watermark. It is designed to support training and evaluation of models focused on watermark detection, which is useful for content filtering, copyright protection, and image moderation tasks.
19
+
20
+ ## Dataset Structure
21
+
22
+ - **Split:** `train`
23
+ - **Number of samples:** 20,000
24
+ - **Label Type:** Categorical (2 classes)
25
+ - **Image Resolution:** Ranges from 158 pixels to 4.93k pixels in width
26
+ - **Storage Format:** Auto-converted to Parquet for efficient access
27
+
28
+ ## Label Classes
29
+
30
+ The dataset contains the following classes:
31
+
32
+ - `0` - No Watermark
33
+ - `1` - Watermark
34
+
35
+ ## Usage
36
+
37
+ The dataset can be accessed using the Hugging Face `datasets` library:
38
+
39
+ ```python
40
+ from datasets import load_dataset
41
+
42
+ dataset = load_dataset("prithivMLmods/Watermark-or-Not-20K")
43
+ ````
44
+
45
+ ## Applications
46
+
47
+ This dataset is suitable for:
48
+
49
+ * Training computer vision models to detect watermarks
50
+ * Fine-tuning transformer-based vision models on binary classification tasks
51
+ * Building AI-based content moderation pipelines