File size: 1,567 Bytes
98d6cab
 
 
 
 
 
 
 
 
 
 
 
 
d40fcab
c5734fd
cd9624b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
---
license: apache-2.0
task_categories:
- image-classification
size_categories:
- 1K<n<10K
language:
- en
tags:
- Gender
- Classification
- Male
- Female
- art
- medical
---

# Realistic-Portrait-Gender-1024px

**Dataset Type:** Image Classification
**Task:** Gender Classification (Female vs. Male Portraits)
**Size:** \~3,200 images
**Image Resolution:** 1024px x 1024px
**License:** Apache 2.0

## Dataset Summary

The **Realistic-Portrait-Gender-1024px** dataset consists of high-resolution (1024px) realistic portraits labeled by perceived gender identity: `female` or `male`. It is designed for image classification tasks, particularly for training and evaluating gender classification models.

## Supported Tasks

* **Binary Gender Classification**
  Predict whether a given portrait represents a male or female individual.

## Dataset Structure

| Feature | Type     | Description                       |
| ------- | -------- | --------------------------------- |
| image   | Image    | RGB portrait image (1024x1024 px) |
| label   | Category | `0 = female`, `1 = male`          |

**Split:**

* `train`: Entire dataset is provided under a single training split.

## Example Usage

```python
from datasets import load_dataset

dataset = load_dataset("prithivMLmods/Realistic-Portrait-Gender-1024px")
image, label = dataset['train'][0]['image'], dataset['train'][0]['label']
```

## Labels

* `0` — female portrait
* `1` — male portrait

## License

This dataset is distributed under the [Apache License 2.0](https://www.apache.org/licenses/LICENSE-2.0).