prithivMLmods commited on
Commit
b720da4
·
verified ·
1 Parent(s): 83064ee

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +63 -3
README.md CHANGED
@@ -1,3 +1,63 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ task_categories:
4
+ - image-to-text
5
+ language:
6
+ - en
7
+ tags:
8
+ - document
9
+ - image
10
+ - open-pdf
11
+ - 250+
12
+ size_categories:
13
+ - n<1K
14
+ ---
15
+ # Openpdf-Blank-v2.0-Sample
16
+
17
+ **Openpdf-Blank-v2.0-Sample** is a sample dataset of blank or near-blank invoice and receipt documents. It contains 255 high-resolution scanned images extracted and cleaned from document PDFs. This dataset is intended to support training and evaluation of OCR, document classification, and layout-based filtering models where blank or structurally minimal pages must be identified and processed.
18
+
19
+ ## Dataset Summary
20
+
21
+ * **Format**: Parquet (auto-converted)
22
+ * **Modality**: Image
23
+ * **Size**: 84.8 MB
24
+ * **Number of Samples**: 255
25
+ * **Split**:
26
+
27
+ * `train`: 255 images
28
+ * **Image Dimensions**: Approximately 1690 x 1690 px
29
+ * **License**: Apache 2.0
30
+
31
+ ## Features
32
+
33
+ * Contains scanned images of documents with minimal content or structural layout only.
34
+ * Suitable for:
35
+
36
+ * Blank page detection
37
+ * Document filtering
38
+ * Pre-processing pipeline validation
39
+ * Background noise training for OCR tasks
40
+
41
+ ## How to Use
42
+
43
+ You can load the dataset using the Hugging Face `datasets` library:
44
+
45
+ ```python
46
+ from datasets import load_dataset
47
+
48
+ dataset = load_dataset("prithivMLmods/Openpdf-Blank-v2.0-Sample")
49
+
50
+ # Access the first image
51
+ image = dataset["train"][0]["image"]
52
+ image.show()
53
+ ```
54
+
55
+ Each record in the dataset contains:
56
+
57
+ * `image`: A PIL.Image object of the scanned blank/near-blank page.
58
+
59
+ ## Use Cases
60
+
61
+ * Training models to detect and discard blank or non-informative pages in document workflows.
62
+ * Evaluating the robustness of OCR pipelines to blank document noise.
63
+ * Dataset balancing for invoice or receipt classifiers.