File size: 1,834 Bytes
e9e534f
 
 
 
 
 
983f5e7
f695d7d
 
 
 
466103c
ca40f93
98c7de3
 
32916d3
 
98c7de3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a3114fb
 
 
 
98c7de3
 
 
 
 
 
 
 
 
 
 
 
 
ca40f93
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
---
license: apache-2.0
task_categories:
- image-classification
size_categories:
- 10K<n<100K
tags:
- Anime
- Cartoon
- Realistic
- Sketch
- Portrait
- art
---

![11.png](https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/iSho0GesLdh2P9mNr8WOg.png)

# **Multilabel-Portrait-18K**

**Multilabel-Portrait-18K** is a multi-label portrait classification dataset designed to analyze and categorize different styles of portrait images. It supports classification into the following four portrait types:

- **0** — Anime Portrait  
- **1** — Cartoon Portrait  
- **2** — Real Portrait  
- **3** — Sketch Portrait  

This dataset is ideal for training and evaluating machine learning models in the domain of portrait-style classification. The goal is to enable accurate recognition of artistic and real-world portraits for applications such as image generation, enhancement, style transfer, and content moderation.

## **Use Cases**
- Multi-label classification for style recognition  
- Pretraining or fine-tuning portrait classifiers  
- Improving filters and sorting in creative AI applications  
- Enhancing deepfake detection via portrait-style understanding  
- Style-transfer or portrait enhancement tools

## **Dataset Details**
- **Total Samples**: 18,000 portrait images  
- **Labels**: Multi-label format (each image may have more than one label)  
- **Label Schema**:
  - `0`: Anime Portrait  [4,444]
  - `1`: Cartoon Portrait  [4,444]
  - `2`: Real Portrait  [4,444]
  - `3`: Sketch Portrait  [4,444]

## **Format**
The dataset is typically provided in either:
- A directory structure grouped by label
- Or a `.csv` / `.json` file containing `filename` and `labels` fields

Example (`.csv`):

```csv
filename,label
portrait_001.jpg,"[0, 3]"
portrait_002.jpg,"[2]"
portrait_003.jpg,"[1, 2]"
```